• Title/Summary/Keyword: Clean Stocker

Search Result 3, Processing Time 0.015 seconds

Analysis of New Air Control System in Clean Stocker(II) (Clean Stocker내 새로운 방식의 기류제어에 관한 연구(II))

  • Choi, Gi-Han;Han, Chang-Woo;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1178-1186
    • /
    • 2002
  • Clean stockers are being used by semiconductor and TFT-LCD manufacturers to store and buffer work in process. The only way to keep the stored product clean is to provide constant clean airflow the product and through stocker. Up to now, stockers typically have been configured to receive their laminar airflow from fan filter units that are located on the side of the stocker. This type of stocker may have such problems as complexity of structure, increment of temperature, mechanical vibration, initial investment and running cost. In this study, in order to solve the above mentioned problems, new air control system in stocker is proposed, which is to control open ratios of exits that are located on the side of the stocker without fan filter units. In this study, static pressure regain was used for the analysis of the open ratios of exits theoretically and experiment was also conducted using actual clean stocker for TFT-LCD manufacturers and CFDesign, was used for simulating airflow in stocker. As a result, open ratios of exits can be obtained by the analysis of static pressure regain and was verified by experiment and simulation results. Therefore, new air control system in stocker can be used by the semiconductor and TFT-LCD manufacturers.

Analysis of New Air Control System in Clean Stocker (Clean Stocker내 새로운 방식의 기류제어에 관한 해석)

  • Choe, Gi-Han;Han, Chang-U;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.121-130
    • /
    • 2002
  • Clean stockers are being used by semiconductor and TFT-LCD manufacturers to store and buffer work in process. Since an important function of a stocker is to keep the contained material clean. The only way to keep the stored product clean is to provide constant clean airflow the product and through stocker, The airflow across the product prevent contamination from settling on the product. Up to now, stocker typically have been configured to receive their laminar airflow from fan filter units that are located on the side of the stocker This type of stocker may have such problems as complexity of structure, increment of temperature, mechanical vibration, initial investment and running cost. In this study, In order to solve the above mentioned problems, new air control system in stocker is proposed, which is to control open ratios of exits that are located on the side of the stocker without fan filter units. Open ratios of exits need to be optimized for the same quantities of airflow in each exit. In this study, static pressure regain was used for the analysis of the open ratios of exits theoretically and Blue Ridge Numerics FEM software, CFDesign, was used fur simulating airflow in stocker. As a result, Open ratios of exits important to provide constant clean airflow can be obtained by the analysis of static pressure regain and was verified by simulation results. Therefore, new air control system in stocker can be used by the semiconductor and TFT-LCD manufacturers.

Designing of Stocker Robot's Fork Base using Axiomatic Design Method (설계의 공리를 적용한 Stocker Robot의 Fork Base설계)

  • Back, Tae-Jin;Paik, Cheol-Jun;Yoon, Jong-Bo;Moon, In-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.75-81
    • /
    • 2011
  • Today, FPD manufactures are eager to develop larger and larger glass to become the prime market leader. To follow this need, larger AMHS(Automated Material Handling System) development is essential. The radical increase of glass/cassette weight puts a lot of pressure on stocker robot's dual arms, which can cause a damage of expensive glasses and contaminate a clean room facility. In this paper the axiomatic design method is used to institute a design guideline to evenly distribute a pressure throughout the stocker robot structure.