• Title/Summary/Keyword: ClayMineral

Search Result 546, Processing Time 0.033 seconds

Geopung Copper Deposit in Ogcheon, Chungcheongbuk-do: Mineralogy, Fluid Inclusion and Stable Isotope Studies (거풍구리광상: 산출공물, 유체포유물 및 안정동위원소 연구)

  • Yoo, Bong-Chul;You, Byoung-Woon
    • Economic and Environmental Geology
    • /
    • v.44 no.3
    • /
    • pp.193-201
    • /
    • 2011
  • The Geopung Cu deposit consists of two subparallel quartz veins that till the NE-trending fissures in Triassic Cheongsan granite. The quartz veins occur mainly massive with partially cavity and breccia. They can be followed along strike for about 500 m and varies in thickness from 0.2 to 2.2 m. Based on the mineralogy and paragenesis of veins, mineralization of quartz veins can be divided into hypogene and supergene stages. Hypogene stage is associated with hydrothermal alteration minerals such as sericite, pyrite, quartz, chlorite, clay minerals and sulfides such as pyrite, arsenopyrite, pyrrhotite, marcasite, sphalerite, stannite, chalcopyrite and galena. Supergene stage is composed of geothite. Fluid inclusion data from quartz indicate that homogenization temperatures and salinity of hypogene stage range from 163 to $356^{\circ}C$ and from 0.2 to 7.2 wt.% eq. NaCl, respectively. They suggest that ore forming fluids were progressively cooled and diluted from mixing with meteoric water. Sulfur (${\delta}^{34}S$: 4.3~9.2‰) isotope composition indicates that ore sulfur was derived from mainly magmatic source although there is a partial derivation from the host rocks. The calculated oxygen (${\delta}^{18}O$: 0.9~4.0‰) and hydrogen (${\delta}D$: -86~-69‰) isotope compositions suggest that magmatic and meteoric ore fluids were equally important for the formation of the Geopung Cu deposit and then overlapped to some degree with another type of meteoric water during mineralization.

A Comparative Study on the Measures Determining Optimal SAGD Locations Based on Geostatistical and Multiphysics Simulations (지구통계 및 다중 유체 거동 모사에 근거한 스팀주입중력법 적용 최적지 결정 척도 개발 연구)

  • Kwon, Mijin;Jeong, Jina;Lee, Hyunsuk;Park, Jin Beak;Park, Eungyu
    • Economic and Environmental Geology
    • /
    • v.50 no.3
    • /
    • pp.225-238
    • /
    • 2017
  • In this study, two viable measures of mean length and cumulative thickness of sand layers as important spatial statistics responsible for optimal SAGD (Steam Assisted Gravity Drainage) location for oil sand development were compared. For the comparisons, various deposits composed of sand and clay media were realized using a geostatistical simulator and the extent of steam chamber is simulated using multiphysics numerical simulator (dualphase flow and heat transfer). Based on the spatial statistics of each realization and the corresponding size of simulated steam chamber, the representativeness of two candidate measures (cumulative thickness and mean length of permeable media) were compared. The results of the geostatistical and SAGD simulations suggest that the mean length of permeable media is better correlated to the size of steam chamber than the cumulative thickness. Given those two-dimensional results, it is concluded that the cumulative thickness of the permeable media alone may not be a sufficient criterion for determining an optimal SAGD location and the mean length needs to be complementarily considered for the sound selections.

Effects of Native Korean Lespedeza(Lespedeza stipulacea Maxim.) on Soil Conservation (자생(自生) Korean Lespedeza(Lespedeza stipulacea Maxim.)가 토양보전(土壤保全)에 미치는 영향(影響))

  • Kim, Moo-Sung;Kim, Se-Young;Jeong, Woo-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.1
    • /
    • pp.72-83
    • /
    • 1997
  • Forty six natural habitats of Korean lespedeza(Leapedeza stipulacea Maxim.) were investigated for the growth characteristics, mineral contents of plant and the physico-chemical properties of natural habitat's soil compared with the upland soil nearby the habitat. The results obtained were summarized as follows. Plant height and dry matter yield were higher in the samples taken in late than early August showing large variation within the sampling date and location. Korean lespedeza showed higher contents of Fe and Mn, but lower contents of K, Ca, Mg and Cu than Alfalfa. The contents of P and Zn were about the same. The natural habitat showed higher soil pH and Ca content but lower contents of $P_2O_5$, K, and organic matter than the vicinity of natural habitats and the average soil of Korea. The contents of Mg were about the same. The soil texture of natural habitats showed much higher portion of sand and extremely low portions of silt and clay than both area. Korean lespedeza is so well adapted to the soil with low fertilizer and organic matter that other crops and most weeds fail. It also appears to thrive on the sandy loams, loamy sands of the piedmont region such as waste land and on the similar soils with variously physico-chemical properties.

  • PDF

Distribution Characteristics of Quaternary Geology and Aggregate Resources in Geumsan-gun, Chungcheongnam-do (충청남도 금산군 일대 제4기 지질 및 골재자원 분포 특성)

  • Kim, Jin Cheul;Kim, Ju Yong;Lee, Jin-Young
    • Economic and Environmental Geology
    • /
    • v.54 no.5
    • /
    • pp.595-603
    • /
    • 2021
  • Sand layer distribution, which is the main target of river and land aggregate resources, mainly belongs to alluvial and river sedimentary environments among the Quaternary sedimentary environments. The distribution of aggregate resources in the area of Geumsan-gun, Chungcheongnam-do is characteristically developed around a sedimentation environment in which intrusive meandering river dominate. Although the area around Bonhwangcheon Stream and the area near the confluence of small streams are small, the river floodplain develops and corresponds to the aggregate distribution area. The sedimentary layer formed in the sedimentary environment such as colluvial deposits or alluvial fan deposits has a relatively low distribution rate of aggregate resources. The vertical distribution of the Quaternary sedimentary layers in the Geumsan-gun region ranges from about 5 to 12 m and has an average Quaternary sedimentary thickness of 8 m. The aggregate-bearing section has an average thickness of 3.6 m, and the average grain size is about 21% clay-silt, 67% sand, and 12% gravel. The main characteristics of the aggregate-bearing section are that coarse-grained sand predominates, and gravel is sub-angular or sub-rounded, and the sorting is generally poor and has a massive form of deposits, and the soil colour ranges from dark grey to yellowish-brown. In Geumsan-gun, the most likely distribution area for aggregate development is the alluvial sedimentary and river sedimentary layers distributed along the current and former riverbeds of the main Geumgang River, Bonhwangcheon and small River tributaries.

K-Ar Ages of Alunite and Sericite in Altered Rocks, and Volcanic Rocks around the Haenam Area, Southwest Korea (해남지역(海南地域) 화산암류(火山岩類)와 납석 및 고령토 광상(鑛床)의 K-Ar 연대(年代))

  • Moon, Hi-Soo;Kim, Young Hee;Kim, Jong Hwan;You, Jang Han
    • Economic and Environmental Geology
    • /
    • v.23 no.2
    • /
    • pp.135-141
    • /
    • 1990
  • A number of alunite and pyrophyllite deposits occur around the Haenam area where Cretaceous volcanic and volcanogenic sediments are widely distributed. The K-Ar ages of alunite, sericite and whole rocks collected from alunite and pyrophyllite deposits and unaltered rocks representing various stratigraphic horizon of the area were determined and their formation stage was discussed. The ages of volcanic rocks range between $68.6{\pm}1.9$ and $94.1{\pm}2.0$ Ma corresponding to Cenomanian-Maastrichtian of upper Cretaceous. Andesitic rock gives $94.1{\pm}2.0$. Rhyolite and acidic tuffs give $79.47{\pm}1.7$ and $82.8{\pm}1.2$ Ma corresponding to Campanian. The later stage andesite gives $68.6{\pm}1.9$ Ma of Maastrichtian. The results suggest that volcanism of the area can be devided into three different stages. The ages of alunite and sericite range $71.8{\pm}2.8$ to $76.6{\pm}2.9$ Ma of late Campanian to early Maastrichtian which is rather earlier than the age of granite(67 Ma). It indicates that the alteration ages of these clay mineral deposits appeared to be related with its volcanism rather than the hydrothermal stage of granite of this area.

  • PDF

Effects of Soil Components Flowed from Upper Banbyun Stream on Turbidity of Imha Reservoir (반변천 상류지역 토양성분의 유입이 임하호 탁도에 미치는 영향)

  • Seo, Eulwon;Kim, Younjung;Hwang, Haeyeon;Kim, Hyunmc;Baek, Seungcheol;Kim, Jongsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.4
    • /
    • pp.35-41
    • /
    • 2006
  • This paper analyzed elution and ingredients of soil components which consist of soil and rocks in 6 regions in Yeongyang and Cheongsong to identify substantial matters that cause muddy water in Imha reservoir. We identified that more than 80% of major ingredients in collected soil and rocks are vermiculite(V), illite(I), kaolinite(Ka), quartz(Q), feldspar(F). Sodium and calcium are eluted in large quantities from soil of Sanseong and Cheongki. When calcium is in contact with water, much ions are eluted rapidly. We confirmed these ions are alkali minerals rising pH. We consider clay components distributed in Yeongyang as major cause of muddy water and rising pH of Imha reservoir because its ingredient calcite easily is dissolved in rainwater and splits other mineral particles into ${\mu}m$ sized particles.

  • PDF

Separation of soil Organic Debris using Sucrose-ZnCl2 Density Gradient Centrifugation

  • Jung, Seok-Ho;Chung, Doug-Young;Han, Gwang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.30-36
    • /
    • 2012
  • The active fraction of soil organic matter, which includes organic debris and light organic fraction, plays a major role in nutrient cycling. In addition, particulate organic matter is a valuable index of labile soil organic matter and can reflect differences in various soil behaviors. Since soil organic matter bound to soil mineral particles has its density lower than soil minerals, we partitioned soil organic matter into debris ($<1.5g\;cm^{-3}$), light fraction ($1.5-2.0g\;cm^{-3}$), and heavy fraction ($>2.0g\;cm^{-3}$), based on high density $ZnCl_{2-}$ sucrose solutions. Generally, partitioned organic bands were clearly separated, demonstrating that the $ZnCl_{2-}$ sucrose solutions are useful for such a density gradient centrifugation. The available gradient ranges from 1.2 to $2.0g\;cm^{-3}$. Although there was not a statistically meaningful difference in organic debris and organomineral fractions among the examined soils, there was a general trend that a higher content of organic debris resulted in a higher proportion of light organomineral fraction. In addition, high clay content was associated with increased fraction of light organomineals. Partitioning of soil organic carbon revealed that carbon content is reduced in the heavy fraction than in the light fraction, reflecting that the light fraction contains more fresh and abundant carbon than the passive resistant fraction. It was also found that carbon contents in the overall organic matter, debris, light fraction, and heavy fractions may differ considerably in response to different farming practices.

Mineralogical Characterization of Mine Tailings in Okdong Mine, Euiseong, Korea (의성 옥동광산 광미에 대한 광물학적 연구)

  • Kim, Jun-Young;Ryu, Chung-Seok;Choi, Seung-Won;Jang, Yun-Deuk;Kim, Jeong-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.297-305
    • /
    • 2008
  • Tailings piled up at Okdong mine in Euiseong consists of fine powder, and are mainly composed of pyrite, sphalerite, chlorite, illite, plagioclase, smectite, gypsum, etc. Smectite is concentrated in the upper part of tailings and chlorite is downwardly increased. Gypsum is generally observed on the surface of the mine tailings, suggesting that it was formed by the reaction of Ca and $SO_4$ in leachate after evaporation. Through the electron microscope study of sphalerite within the tailings, it was observed that there is significant weathering both on surface and in the inner part of the sphalerite, suggesting that the reaction of the failings with groundwater for long period of time contributed a significant addition of Zn and $SO_4$ into the leachate.

Dissolution Properties for the Inorganic Pollutants in Soils (토양 중 무기 오염물질의 용출 특성)

  • Chung, Kang-Sup;Choi, Byung-In;Kim, Sang-Yeon;Song, Duk-Young;Kim, Kun-Han;Seong, Hak-Je
    • Analytical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.53-60
    • /
    • 1999
  • Dissolution properties for the 6 inorganic pollutants (As, Cd, Cu, Pb, Zn, Cr) in soils have been studied. These 6 inorganic pollutants were spiked to 3 kinds of fresh soils which were sand, clay, and loam. The dissolution properties of the prepared samples were investigated under the various extracting conditions such as extracting time, acid concentration, particle size, etc. in order to obtain basic information about the process of extraction test and improvement of related analytical methods. As the results, dissolution properties were affected mainly by acid concentration in extracting procedure and mineral composition of soils. On the other hand, extracting time, sort of acids and particle size of soils had a little influence on the dissolution properties. Cd revealed very high dissolving efficiency and As was very low in whole extracting test.

  • PDF

Geomechanical Model Analysis for the Evaluation of Mechanical Stability of Unconsolidated Sediments during Gas Hydrate Development and Production (가스하이드레이트 개발생산과정에서의 미고결 퇴적층의 역학적 안정성 평가를 위한 지오메카닉스모델 해석)

  • Kim, Hyung-Mok;Rutqvist, Jonny
    • Tunnel and Underground Space
    • /
    • v.24 no.2
    • /
    • pp.143-154
    • /
    • 2014
  • In this study, we simulated both dissociation of gas hydrate and mechanical deformation of hydrate-bearing sedimentary formation using geomechanical model. The geomechanical model analysis consists of two distinct codes of TOUGH+Hydrate and FLAC3D. The model is characterized by the fact that changes of temperature, pressure, saturation and their influence on the consequent evolution of effective stress, stiffness and strength of hydrate-bearing sediments during gas production could be well simulated. We compared the results of simulation for two different production methods, and showed that combination of depressurization and thermal stimulation results in the enhancement of production rate especially at early stage. We also presented that the hydrate dissociation-induced geomechanical deformation in unconsolidated clay is much larger than that in sandstone.