• Title/Summary/Keyword: Clay material

Search Result 569, Processing Time 0.032 seconds

Strength properties of lime-clay mixtures (석회 혼입 점토의 강도 특성)

  • Yur, Jae Ho;Kwon, Moo Nam;Goo, Jung Min;Kim, Hyun Ki
    • Current Research on Agriculture and Life Sciences
    • /
    • v.18
    • /
    • pp.61-69
    • /
    • 2000
  • This study was conducted to investigate most effective the optimum lime content for lime-clay modification. To achieve the aim, characteristics of compaction and compressive strength were tested by adding of 0, 5, 10, 15 and 20% lime (Hydrated lime) of dry weight of the clay. Distilled water was added 10, 15, 20 and 25% of dry weight of lime-clay mixture. In this test, the compressive strength of the specimens was measured according to the following curing period : 7, 21, 28, 35 and 49 days. The results are as follows. (1) As lime additive increased, the optimum moisture content of lime-clay mixture was increased and the maximum dry density was decreased. (2) The soil mixture of 20% of the moisture content and 10% of lime additive was shown the maximum compressive strength. (3) As curing period longer, the compressive strength was increased but after 21 curing days, the increasing rate of compressive strength was low as compared with earlier its value. (4) In the range of 20% of the moisture content, compressive strength of mixture of 10% lime additive increased twice compared with that of mixture of 0% lime additive. (5) All of the lime-clay are possible to use for an sub-base material and 20% of moisture content of lime-clay mixture is possible to use for a base material.

  • PDF

Development of a new engobe for raku ceramics (적색 RAKU 도자기의 화장토 개발에 관한 연구)

  • Kwon, Young Joo;Hwang, Dong Ha;Lee, Byung Ha
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.1
    • /
    • pp.21-26
    • /
    • 2014
  • Red clay has been used for making rakuyaki for the past 400 years. Because the resources for red clay in Japan are being depleted, many potters in Japan began to develop new materials which can replace red clay. In this study, It is analyzed that the chemical and physical properties of red clay from Shigaraki (Shiga, Japan), and developed a novel engobe which can be used for making Rakuyaki instead of Shigaraki red clay. Results from Raman spectroscopic examination showed that ferric oxide content in Shigaraki red clay is 9.4 % (Goethite 5 %, Wustite 4.4 %), and that the mechanism of red color development by the firing at $900^{\circ}C$ for 10 min is the chemical transformation of Goethite into Hematite, and the subsequent formation of solid solution with Alumina and Silica. To make similar ferric oxide content to that of Shigaraki red clay, we added 5 g of Goethite and 9 g of Wustite to 100 g of White kaolin from Hadong area (Gyeongsangnam-do, Korea). The $L^*a^*b^*$ color scale of the mixture was 56.83, 27.22, and 23.28, respectively, and stable red color was successfully developed under the same firing condition used for Shigaraki red clay.

Numerical analysis of geocell reinforced ballast overlying soft clay subgrade

  • Saride, Sireesh;Pradhan, Sailesh;Sitharam, T.G.;Puppala, Anand J.
    • Geomechanics and Engineering
    • /
    • v.5 no.3
    • /
    • pp.263-281
    • /
    • 2013
  • Geotextiles and geogrids have been in use for several decades in variety of geo-structure applications including foundation of embankments, retaining walls, pavements. Geocells is one such variant in geosynthetic reinforcement of recent years, which provides a three dimensional confinement to the infill material. Although extensive research has been carried on geocell reinforced sand, clay and layered soil subgrades, limited research has been reported on the aggregates/ballast reinforced with geocells. This paper presents the behavior of a railway sleeper subjected to monotonic loading on geocell reinforced aggregates, of size ranging from 20 to 75 mm, overlying soft clay subgrades. Series of tests were conducted in a steel test tank of dimensions $700mm{\times}300mm{\times}700mm$. In addition to the laboratory model tests, numerical simulations were performed using a finite difference code to predict the behavior of geocell reinforced ballast. The results from numerical simulations were compared with the experimental data. The numerical and experimental results manifested the importance that the geocell reinforcement has a significant effect on the ballast behaviour. The results depicted that the stiffness of underlying soft clay subgrade has a significant influence on the behavior of the geocell-aggregate composite material in redistributing the loading system.

Characteristics of Compressive Strength Corresponding to the Time Lapse of Quicklime Injected Clay (생석회 주입 점토의 시간경과에 따른 압축강도 특성)

  • Lee, Jundae;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.4
    • /
    • pp.13-17
    • /
    • 2007
  • Improvement of soft clay layers is highly significant for the efficient utilization of the national land. Thus, the development of advanced methods and materials is currently necessary. Quicklime, as a injection material for the soil improvement, is possibly applied as the useful method for the improvement of soft clay layers. Based upon the experimental study, the following conclusions were obtained. When quicklime was employed, a substantial strength increase was observed from the initial stage of injection. In overall, the present experiments showed that the improvement effects of soft clay layers using the quicklime are appeared to be substantially better than those of lime or sand. Therefore, the possibility of quicklime usage is significantly high in domestic country with abundant lime reserves.

  • PDF

Properties of Water-Based According to Particle Size of Granular Activated Clay (입상형 활성백토의 입자크기에 따른 수성도료의 특성)

  • Choi, Byung-Cheol;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.19-20
    • /
    • 2021
  • In order to reduce the emission of harmful substances that degrade indoor air quality, the Ministry of Environment strengthened the standards for the content of VOCs in paints to supply and sell eco-friendly paints. In this related study, an eco-friendly paint mixed with a powder-type absorbent material was prepared and its characteristics were reviewed. As the amount of powder-type absorbent material increased, the workability (viscosity, peeling, etc) decreased. Accordingly, this study aims to examine which particle size is suitable according to the particle size of the granular adsorbent while improving the problem of the powdery adsorbent by using the granular adsorbent. As an experimental plan, the particle size of granular activated clay is selected to be 0.250, 0.425, 0.710(mm), and the decrease rate of VOCs concentration and impact resistance are reviewed. As a result of the experiment, as the particle size of the granular activated clay increased, the decrease rate of the VOCs concentration increased and the impact resistance improved. Therefore, considering the problems that occur after actual painting, the particle size of granular activated clay of 0.425mm is suitable.

  • PDF

One-Pot Synthesis of Clay-dispersed Poly(styrene-co-acrylonitrile) Copolymer Nanocomposite using Poly($\varepsilon$-caprolactone) as a Compatibilizer

  • Ko, Moon-Bae
    • Macromolecular Research
    • /
    • v.8 no.4
    • /
    • pp.186-191
    • /
    • 2000
  • Clay-dispersed nanocomposites have been prepared by simple melt-mixing of three components, i.e. poly (styrene co-acrylonitrile) copolymer (SAN), poly ($\xi$-caprolactone ) (PCL), and an organophilic clay(Cloisite(R) 30A). In the present study, poly($\xi$-caprolactone) was added in the mixtures in order to facilitate the intercalation of SAN into the gallery of silicate layers, and the molecular weight effects of PCL on the dispersion of silicate layers were compared by changing the amount of added PCL. The degree of dispersion of 10-$\AA$-thick silicate layers of clay in the nanocomposites was investigated by using an X-ray diffractometer and a transmission electron microscope. It was found that PCL added in the mixture facilitate the intercalation of SAN copolymers into the galleries of silicate layers modified with an organic intercalant, resulting in the better dispersion of clay. It was, also, observed that the processing temperature influences the degree of clay dispersion.

  • PDF

Development of Al2TiO5-Clay Composites for Far Infrared Radiator (Al2TiO5-점토 복합체를 이용한 원적외선방사재질의 개발)

  • Han, Sang Mok;Shin, Dae Yong
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.239-245
    • /
    • 2000
  • Sintered $Al_2TiO_5$ has a very low thermal expansion and an infrared radiative selectively emitting large amounts of far infrared rays. However, it is week in mechanical strength. Spectral infrared emittance, thermal expansion coefficient, and mechanical strength of $Al_2TiO_5$-clay composites were studied to develop a material for far infrared radiators. The composites containing 10~50 mass% Jungsan clay had high emittance in the range of 2,000~500cm-1. The bending strength of the $Al_2TiO_5$-clay composites increased with increasing clay content. The $Al_2TiO_5$-clay composites with a clay content of 50mass% and heat-treated at $1,200^{\circ}C$ had a large strength for infrared radiators ; 86MPa. The average linear thermal expansion coefficient from $200{\sim}1,000^{\circ}C$ of the 50mass% jungsan clay containing compo sited heat-treated at $1,200^{\circ}C$ was lower than $3.87{\times}10-6/^{\circ}C$.

  • PDF

Effect of clay mineral types on the strength and microstructure properties of soft clay soils stabilized by epoxy resin

  • Hamidi, Salaheddin;Marandi, Seyed Morteza
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.729-738
    • /
    • 2018
  • Soft clay soils due to their various geotechnical problems, stabilized with different additives. Traditional additives such as cement and lime will not able to increase the soil strength properties significantly. So, it seems necessary to use new additives for increasing strength parameters of soft clay soils significantly. Among the new additives, epoxy resins have excellent physical and mechanical properties, low shrinkage, excellent resistance to chemicals and corrosive materials, etc. So, in this research, epoxy resin used for stabilization of soft clay soils. For comprehensive study, three clay soil samples with different PI and various clay mineral types were studied. A series of uniaxial tests, SEM and XRD analysis conducted on the samples. The results show that using epoxy resin increases the strength parameters such as UCS, elastic modulus and material toughness about 100 to 500 times which the increase was dependent on the type of clay minerals type in the soil. Also, In addition to water conservation, the best efficiency in the weakest and most sensitive soils is the prominent results of stabilization by epoxy resin which can be used in different climatic zones, especially in hot and dry and equatorial climate which will be faced with water scarcity.

Developing Growth Media for Artificial Ground by Blending Calcined Clay and Coconut Peat (소성 점토다공체 및 코코넛 피트를 이용한 인공지반용 혼합배지의 개발)

  • 심경구;허근영;강호철
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.3
    • /
    • pp.109-113
    • /
    • 1999
  • The objective of this research was to develop growth media for artificial ground by blending calcined clay and coconut peat. To achieve this, aggregates of clay particles were mixed with disel oil and heated to high temperature(1150~120$0^{\circ}C$) to expand clays. The particle sizes of expanded clay were controlled to 2~5mm in diameter. Then expanded clayes were mixed with coconut peat and changes of soil physicochemical properties and their effect on plant growth of Hedera L. were determined. The infiltration rate of calcined clay was very high, but the water holding capacity, the cation exchange capacity(CEC), and the nutrient contents were low. The characteritics of coconut peat was vice verse to calcined clay. This indicates that the mixture of calcined clay and coconut peat have the better characteristics than each material. As compared to mineral soil, the infiltration rate, the water holding capacity, the CEC and the nutrient contents increased, but bulk density decreased to about 1/4. And, Hedera L. grown in the mixture of calcined clay and coconut peat(6:4, v/v) had higher plant height, longer leaf length, more total number of leaves per plant and fresh weight than that grown in mineral soil, but statistical differences were not observed between two treatments.

  • PDF

Value of clay as a supplement to swine diets

  • Mun, Daye;Lee, Jongmoon;Choe, Jeehwan;Kim, Byeonghyeon;Oh, Sangnam;Song, Minho
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.2
    • /
    • pp.181-187
    • /
    • 2017
  • The use of practical management factors to maximize pig health improvement cannot guarantee freedom from diseases. Moreover, because of health safety concerns, the use of antibiotics has been restricted in livestock, including pigs. Therefore, the swine industry has been looking for various alternatives to antibiotics to improve pig's health and performance. Clay is a dietary factor generally accepted for improving pig health. It is a naturally occurring material and is primarily composed of fine-grained minerals. It has a specific structure with polar attraction. Because of this structure, clay has the ability to lose or gain water reversibly. In addition, clay has beneficial physiological activities. First, clay has anti-diarrheic and antibacterial effects by penetrating the cell wall of bacteria or inhibiting their metabolism. Second, it can protect the intestinal tract by absorbing toxins, bacteria, or even viruses. When added to the diet, clay has also been known to bind some mycotoxins, which are toxic secondary metabolites produced by fungi, namely in cereal grains. Those beneficial effects of clay can improve pigs' health and performance by reducing pathogenic bacteria, especially pathogenic Escherichia coli, in the intestinal tract. Therefore, it is suggested that clay has a remarkable potential as an antibiotics alternative.