Rock mass in Baekrokdam at the summit of Hallasan in Jeju island is composed of two volcanic rock types: Baekrokdam trachybasalt at the eastern region and Hallasan trachyte at the western region. On-going rockfall and subsequent collapse of Baekrokdam wall rock are closely linked to the weathering of trachyte distributed in the western region of Baekrokdam. Samples of Hallasan trachyte showing different weathering grades had been collected and the polarizing microscopic observation, X-ray diffraction analysis and analysis for chemical weathering had been conducted. Formation of secondary minerals, especially clay minerals, by chemical weathering has not been identified, but the change of chemical weathering indices indicated that chemical weathering process had been proceeded to the degree for increasing and decreasing the contents of some chemical components. Changes in physical and mechanical rock properties due to weathering has also been examined. Artificial weathering test of freezing-thawing reveals that the process of crack initiation and propagation deteriorated the mechanical characteristics of Hallasan trachyte and $D_B$ = 1.5 or porosity = $20{\sim}21%$ would be the ultimate limiting value induced by the mechanical weathering processes.
We researched the variation of mineral composition with depth and the Cu adsorption behavior of Hwangto in the Okjong area, Hadong. The 4 Hwangto samples were collected from depth 10 cm, 25 cm, 2∼3 m and under 3 m from surface, and analyzed using the Xray Diffractometer. The Hwangto samples were mostly composed of clay minerals such as kaolinite and halloysite. Two samples from 10 cm and 25 cm contained Fe or Al hydroxide minerals, for example goethite or gibbsite. As depth increases, the content of quartz decreases but that of kaolinite increases. The amount of Cu removal was rapidly rised from pH 4, and reached about 90% at pH 6 and above 90% at pH 7. It is regarded that the trend of Cu removal was affected by the difference in mineral composition. It was relatively well matched between experimental value and calculated value by MINTEQA2 program in the case of high Cu concentration. From this study the precipitation has important role for the removal of Cu ions, particularly in the case of high Cu concentration. However, it was discord between experimental value and calculated one in the dilute concentration circumstances. The reason may be the mistake in parameters, insufficient reaction time, and inadequate consideration of reaction site in mineral surface.
This study examined the manufacturing process of a furnace wall excavated from the Songdu-ri Site in Jincheon, and the difference in material composition between the 11 layers of the wall using physicochemical analyses. Based on microstructure observations, these layers could be largely divided into three groups: an undercalcined first layer, calcined second to ninth layer with evidences of partial heat, and non-fired soil layers from the tenth to the eleventh layer. Particle size analyses revealed that the fired layer constituted a relatively higher content of coarse sand than the non-fired layer. This difference was further confirmed by the results of the curvature coefficient analysis. An analysis of the constituent minerals showed similar overall XRD diffraction patterns between the different layers, but variations in the intensity of the low-temperature and high-temperature minerals. This indicates that the degree of heat was different. The thermal analysis results demonstrated that the heating peak of mullite was only reached in the first and second layers of the wall, thus implying these as the layers to be finally used. Consequently, no significant difference could be observed between the materials of the various layers of the wall. Thus, it can be suggested that the furnace wall was constructed using clay, which had a composition similar to that of the soil present in the area. However, the shape and characteristics of the constituent particles between the layers displayed partial variations, and it is possible that some external materials might have been added.
The Seokgatap pagoda composed of mainly alkali granite and other minor pink-feldspar granite, fine-grained granite, granodiorite, diorite, gabbro, and tuff. Despite the small loss and damage derived from joints, its peel-off and exfoliation are serious enough to cause the heavy deterioration on the stone surface. The chemical and petrological weathering has partly replaced the original rock-forming minerals with clay minerals and iron oxyhydroxides. Based on the petrogenesis, rock materials of the pagoda is very similar to rocks of Dabotap pagoda and the Namsan granite in the Gyeongju. The central fart of the pagoda has sunken highly, which caused all the corners to split and the structural transformation to become worse. The reverse V-shaped gaps between the materials have broken stones filled in a coarse way. The iron plates inserted between the upper flat stone laid on other stones and tile pagoda body in the north and east side has been exposed in the air and corroded, discoloring of the adjacent stones. The overall diagnosis of the Seokgatap pagoda is the deteriorated functions of the stone materials, which calls for a long-term monitoring and plans to reinforce the stone surfaces. But the main body including the pagoda roof stone needs washing on a regular basis, and the many different cracks should be fixed with glue by using the fillers or hardeners designed for stone cultural properties after removing the cement mortar. In case of the replacement of the stone materials with new stones, it's necessary to examine the pagoda for the center of gravity and support intensity of the materials. The structural stability of the pagoda can be attained by taking a reinforce measure in geotechnical engineering and making a drainage. The ground humidity, which has aggravated weathering and structural instability, should be resolved by setting up a humidity reduction facility. The contamination of lichens and bryophyte around the pagoda and on the surface is serious. Thus biochemical treatments should be given too in order to prevent further biological damages and remove the vegetation growing on the discontinuous planes.
The host rocks of brick-shaped stone pagoda in the Bunhwangsa temple are lots of kinds andesitic rocks, which has gone through mechanical and chemical weathering. As the overall observation, the pagoda is serious damages by air pollutants, and the northeast parts show the much advanced state of turning white, while the southeast parts are heavily cracked in the materials. The rocks of brick-shaped pagoda body are in a relatively stable condition of weathering and damage except for the abrasion and cracks of the corners. The rocks of the pagoda roof suffer from more symptoms including multiple peel-offs, exfoliation, cracks forming round lines, and falling off stone pieces. The pagoda roof rocks are dominated by the thriving leafy lichens and mosses, especially, there are higher plants (selaginella involvens, dandelions) taking root actively between the brick stones and content mortar. There are even light gray precipitates like stalactites between the rocks of the body, In particular, the 1st and 2nd floor in the east side and the body parts in the north side are the most serious. Their major minerals are calcite, gypsum and clay minerals. The rocks of the stylobate and the tabernacle in all the four directions are composed mainly of granitic rocks. The materials consisting of the tabernacles show the severe splits and distortion, which causes the structural instability. The stylobate rocks are heavily contaminated by some weeds with the often marks of inorganic contamination by secondary hydroxides. The central part of the east stylobate has been sinking, while that of the 1st floor west stylobate is protruded nesting a line of cracks. Accordingly, the inside of the tabernacle is always humid with the constant introduction of rainwater. The stone lion standing in the southeast and northeast side are alkali granite, while that in the southwest and northwest lithic tuff. Each of the stone lion also coated with various colored lichens, mosses, algae, bacteria and bryophyte. The external materials of the pagoda have deteriorated the functions of the rocks and made the loss, falling off, and biological contamination even worse due to the surface weathering. Thus it's urgent to come up with scientific restoration and conservation measures through clinical tests.
The host rock of standing sculptured Buddha in the Yongamsa temple was macular biotite granite, which has gone through mechanical and chemical weathering. The principal rock-forming minerals are quartz, plagioclase, alkali feldspar, and biotite, the last two of which have been transformed into clay minerals and chlorite due to weathering processes. The bed rock around the Buddha statue is busily scattered with steep inclinations that are almost vertical and discontinuous planes with the strikes of $N8^{\circ}E$. The major joints have the strikes of N4 to $52^{\circ}W$ and N6 to $88^{\circ}E$ and the dips of 42 to $89^{\circ}$. Especially thee development of the joints that cross the major joints causes tile structural instability of the rock. The host rock of the Buddha image is separated into many different rock masses because of the also many different discontinuity, which group accounts for about $12{\%}$ of the rock. Thus it's estimated that the bed rock has not only plane and toppling failure but also wedge failure in all the sides. Since the earth pressure and the inclination pressure are imposed on the body of the Buddha in the basement rock, it's urgent to give a treatment of geotechnical engineering for the sake of its structural stability. The parts where serious fractures are seen should receive the hardening process using the fillers for stones. It's also necessary to introduce a landfill liner system in order to reduce the ground humidity. The rock surface of the Buddha statue are partly contaminated by lichens and bryophyte. The joints have turned into earth, which promotes the growth of weeds and plant roots. Thus biochemical treatments should also be considered to get rid of the vegetation along the discontinuous planes and prevent further biological damages.
Ores of the Jeonnam pyrophyllite province mainly consist of not only pyrophyllite but also kaolinite, and they usually contain minor amounts of muscovite and quartz. We usually call them as porcelaneous stones which usually show lower grade characteristics in the viewpoint of Korean nonmetallic industries. Mineralogical studies for the ores and their intimate formations revealed that another kind of clay minerals could have been produced from the volcanic sediments with similar ages and compositions. Corundum is commoner than the diaspore in the pyrophyllite deposits, and so diaspore can be regarded as one of temporary minerals from which corundum would be finally formed. Kaolinite deposits contain neither diaspore nor corundum, but alunites produced by an advanced argillic alteration are often observed in the upper portions of the kaolin ores. The lowest formation interbedded with pyrophyllite and/or kaolinite ores usually contain purple tuff bed on the uppermost part, and in ascending order, siliceous formation, fine ash tuff and lapillistone are found in the study areas. As ages are becoming younger, amounts of pyrophyllite and kaolinite are radically decreased, or disappeared completely. On the other hand, content of muscovite is slightly increased, and those of plagioclase feldspars and quartz are found to have been preserved from the original rocks during alteration process. Most of ore bodies show rather well bedded formations which are easily discernable in the outcrops, but more effective discremination is desirable where rather massive ores exist. Siliceous beds and purple tuff ones on the upper part of ore bodies would be useful as marker horizons or key beds which have distinct lithologies and extensions.
The Geopung Cu deposit consists of two subparallel quartz veins that till the NE-trending fissures in Triassic Cheongsan granite. The quartz veins occur mainly massive with partially cavity and breccia. They can be followed along strike for about 500 m and varies in thickness from 0.2 to 2.2 m. Based on the mineralogy and paragenesis of veins, mineralization of quartz veins can be divided into hypogene and supergene stages. Hypogene stage is associated with hydrothermal alteration minerals such as sericite, pyrite, quartz, chlorite, clay minerals and sulfides such as pyrite, arsenopyrite, pyrrhotite, marcasite, sphalerite, stannite, chalcopyrite and galena. Supergene stage is composed of geothite. Fluid inclusion data from quartz indicate that homogenization temperatures and salinity of hypogene stage range from 163 to $356^{\circ}C$ and from 0.2 to 7.2 wt.% eq. NaCl, respectively. They suggest that ore forming fluids were progressively cooled and diluted from mixing with meteoric water. Sulfur (${\delta}^{34}S$: 4.3~9.2‰) isotope composition indicates that ore sulfur was derived from mainly magmatic source although there is a partial derivation from the host rocks. The calculated oxygen (${\delta}^{18}O$: 0.9~4.0‰) and hydrogen (${\delta}D$: -86~-69‰) isotope compositions suggest that magmatic and meteoric ore fluids were equally important for the formation of the Geopung Cu deposit and then overlapped to some degree with another type of meteoric water during mineralization.
Sericite is a clay mineral that has a wide applications in the industry, depending on its purity. To maintain sericite's purity as high as possible it is necessary to remove its gangue minerals or control their contents prior to use for high value-added products and applications. In this study, the wet beneficiation of sericite by applying selective grinding and sedimentation techniques, were investigated. The ore mineral was composed mainly of sericite, quartz and calcite. Analysis showed that the content of sericite increased along with the particle size decrease, but the contents of impurity minerals as quartz and calcite were tended to decrease relatively with particle size decrease. The results of liberation tests using an attrition scrubber showed that the increase in residence time and slurry density have increased the generation of fine particles in -325 mesh size range. It was observed, however, that the contents of impurities such as quartz and calcite in such fine particles also increased during prolonged scrubbing. In the dispersed form without breaking, the yield of the recovered concentrate was 15.4 wt% and the $K_2O$ content was 9.84 wt%, after the dispersed slurry was allowed to settle for 20 minutes. On the other hand, the concentrate yield was increased to 23.4 wt% after 10 minute attrition scrubbing and 40 minute sedimentation, while its $K_2O$ content was decreased to 9.71 wt%. Most of final products were observed as platelet-shaped particles containing Si, Al and K which are main component of sericite.
This study was conducted for evaluation the geological, physical, and chemical properties of domestic sand by analyzing about 4,800 quality data of natural sand from river and land area surveyed until 2023 through the aggregate resource survey conducted by the Ministry of Land, Infrastructure and Transport. The average depth of the Quaternary unconsolidated sedimentary layer in Korea, which includes a sand layer, is about 10m (maximum depth 66m). The thickness of the sand layer within the sedimentary layer is most dominant in the range of 0.5m to 4.0m. This accounts for about 70% of the entire sand layer. In the sand layer, the ratio of sand, gravel, and clay is 60:20:10. Regardless of the provenance or geology, the sand is mainly composed of quartz, plagioclase, and K-feldspar, and the minor minerals are muscovite, biotite, chlorite, magnetite, epidote. The sand includes in 45~75% of quartz, 5~20% of plagioclase and K-feldspar, each other. And other minor minerals are included in 10%. The average grain size of sand is 0.5mm to 1.0mm, which accounts for 44% of sand samples. The water absorption rate and soundness are estimated to be suitable for aggregate quality standard in almost all sand, and the absolute dry density is suitable for 66%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.