• Title/Summary/Keyword: Clathrate compound

Search Result 22, Processing Time 0.033 seconds

A Study on the Cooling Characteristics and Subcooling Improvement of TMA-Water Clathrate Compound (TMA-물계 포접화합물의 냉각특성과 과냉각 개선에 대한 연구)

  • Park, Seul-Hyun;Kim, Chang-Oh
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.85-92
    • /
    • 2014
  • This study carried out experimental on the cooling characteristics of clathrate compound including TMA(Tri-Methyl-Amine ; $(CH_3)_3N$) as a low temperature latent heat storage material. And additive was used for subcooling improvement of TMA-water clathrate compound. The conclusion of above study is as following ; TMA 25wt%-water clathrate compound is shown stable phase change and low subcooling degree. The subcooling was improved in the case ethanol($CH_3CH_2OH$) 0.5wt% is added to TMA 25wt%-water clathrate compound.

Study on entrapping behavior of gas mixtures into hydroquinone clathrate (hydroquinone의 혼합기체 포집 거동 특성분석)

  • Choi, Kijong;Lee, Yongjae;Yoon, Jiho;Lee, Jongwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.220-220
    • /
    • 2010
  • clathrate compound란 호스트 분자가 수소 결합에 의하여 3차원 골격구조를 만들고, 이 격자 내부의 동공으로 저분자량의 기체 게스트 분자가 포집되며 형성되는 고체 결정 화합물이다. 현재까지 다양한 호스트 분자가 clathrate 화합물을 형성하는 것으로 보고되어 있으며, 이 중 유기물인 hydroquinone 역시 clathrate compound를 형성할 수 있는 것으로 알려져 있다. clathrate compound는 작은 고체 부피 내부에 막대한 양의 기체 분자를 저장할 수 있는 특성을 지니고 있기 때문에, 에너지 가스의 저장/수송이나 혼합 가스의 선택적 분리와 같은 다양한 응용을 위한 연구가 활발히 진행되고 있다. 본 연구에서는 clathrate compound를 형성하는 유기 호스트 분자인 hydroquinone을 이용하여 다양한 기체분자들에 대한 포집 거동을 파악하였다. 순수 기체로는 $N_2$, $H_2$, $CO_2$, $CH_4$의 4종류를 가지고 고압 반응기에서 50bar의 압력, 상온에서의 반응 조건으로 반응을 시켰다. 이렇게 형성된 반응 샘플들은 clathrate 형성 여부(기체의 포집 여부)를 확인하기 위하여 x-ray 회절을 통한 고체 결정 구조 분석을 수행하였다. 또한 순수 기체 이외에 다양한 비율(20%, 40%, 60%, 80%)의 조성을 갖는 $CO_2+N_2$ 혼합가스를 이용하여 clathrate compound의 형성과 조성 분석을 수행하였는데, x-ray 회절 분석과 13C 고체 NMR 분석을 통해 미세 구조 분석 연구를 수행하였고, Raman분석을 통하여 그 조성을 확인하였다. 본 연구에서 얻어진 결과는 기체의 저장/수송이나 혼합 가스의 선택적 분리와 같은 응용 분야에서 중요한 정보를 제공할 수 있을 것으로 기대된다.

  • PDF

The Effects of an Additive on the Thermal Properties of a Clathrate Compound (IV) - The Case of TMA Clathrate Compound with Surfactant - (포접화합물의 열물성에 미치는 첨가제의 효과 (IV) - TMA 물계 포접화합물에 계면활성제를 첨가한 경우 -)

  • Chung Nak Kyu;Kim Jin Heung;Kim Chang Oh
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1212-1217
    • /
    • 2004
  • This study investigated the improvement effect of a small portion of surfactant on the supercooling and the phase change temperature of TMA 30 wt% clathrate compound when surfactant is added to the clathrate compound. The experiments are carried out under various conditions; the concentration of additive ranges between 0.08~0.12 wt% and the temperature of heat source ranges between -8 and -6$^{\circ}C$. The experimental results show that the phase change temperature with the surfactant of 0.1 wt% is lower by 1$^{\circ}C$ than TMA 30 wt% and the supercooling is reduced by 1$0^{\circ}C$.

A Study on Cooling Characteristic of TMA-Water Clathrate Compound for Low Temperature Latent Heat Storage (저온잠열저장을 위한 TMA-물계 포접화합물의 냉각특성에 대한 연구)

  • Kim, Chang-Oh;Kim, Jin-Heung;Chung, Nak-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2471-2475
    • /
    • 2007
  • Clathrate compound is the material that host in hydrogen bond forms cage and guest is included into it and combined. Crystallization of hydrate is generated at higher temperature than that of ice from pure water. And physical properties according to temperature are stable and congruent melting phenomenon is occurred without phase separation. But clathrate compound still had supercooling problem occurred in the course of phase change and supercooling should be minimized because it affects efficiency of equipment very much. Therefore, various studies on additives to restrain this or heat storage methods are needed. In this study was investigated the cooling characteristics of the TMA-water clathrate compound including TMA (Tri-methyl-amine, $(CH_3)_3N)$ of 20${\sim}$25 wt% as a low temperature latent heat storage material. And ethanol$(CH_3CH_2OH)$ was added and its cooling characteristics were studied experimentally to restrain supercooling of TMA-water clathrate compound.

  • PDF

A Study on the Supercooling Improvement of TMA -Clathrate Compound by Ethanol (에탄올에 의한 TMA- 포접화합물의 과냉각 개선에 대한 연구)

  • Kim, Jin-Heung;Chung, Nak-Kyu;Kim, Chang-Oh
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.392-397
    • /
    • 2005
  • This study is investigated the supercooling improvement and the phase change temperature of the TMA clathrate compound including TMA(Tri-Methyl-Amine, ($(CH_3)_3N$) of 25 wt% with additive as a low temperature storage material at $6^{\circ}C$ and $-7^{\circ}C$ of heat source. The additive is ethanol of 0.1, 0.3 wt% and 0.5 wt%. The results showed that as the concentration of ethanol is increased, the phase change temperature, the degree of supercooling and the retention time of liquid phase are decreased. Especially, TMA 25 wt% clathrate compound with ethanol of 0.5wt% has the average of phase change temperature of $3.8^{\circ}C$, degree of supercooling of $0.9^{\circ}C$, $0.8^{\circ}C$ and retention time of liquid phase for 6, 5 minutes at $-6^{\circ}C$, $-7^{\circ}C$ of heat source. From the results of this study, TMA 25wt% clathrate compound with ethanol 0.5wt% showed supercooling repression effect.

  • PDF

A study on cooling characteristics of clathrate compound for cold storage applications (저온축열용 포접화합물에 냉각특성에 관한 실험적 연구)

  • 한영옥;김진흥
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.205-214
    • /
    • 1999
  • The objective of this paper is to investigate the thermal properties of TMA clathrate compound applicable to cold storage system for building air-conditioning. Especially, the test tube experiments are performed by comparing and analyzing the temperature of phase change, specific heat and subcooling characteristic according to the variation of density, temperature of heat source and charging quantity in TMA clathrate compound. The results are summarized as follows:1) $-15^{\circ}C$ is not proper as the temperature of heat source because the temperature of subcooling is above $8.3^{\circ}C$ 2) temperature of phase change is dropped as the temperature of heat source is lower, 3) the effect of subcooling suppression with about 8$^{\circ}C$ is confirmed when the temperature of heat source is $-10^{\circ}C$ in case of 26, 27, and 30wt%, while the temperature of subcooling is about $0^{\circ}C$ when the temperature of heat source is $-15^{\circ}C$ in case of 25, 26 and 30wt%. Thus, the effect of subcooling suppression is greater as the temperature of heat source is lower. Additionally, the concentrative study is needed on mass concentration causing the phase change without subcooling phenomenon when the temperature of heat source is $-15^{\circ}C$. Thus, it is concluded that TMA clathrate compound has enough thermal properties as the cold storage medium for building air-conditioning.

  • PDF

TMA-Water Clathrate Compound of Cooling Characteristics for Low Temperature Latent Heat Storage (저온잠열축열을 위한 TMA-물계 포접화합물의 냉각특성)

  • Kim, Chang-Oh;Chung, Hyoun-Ho;Chung, Nak-Kyu
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.296-301
    • /
    • 2009
  • The ice storage system uses water for low temperature latent heat storage. However, a refrigerator capacity is increased and COP is decreased due to supercooling of water in the course of phase change from solid to liquid. This study investigates the cooling characteristics of the TMA-water clathrate compound including TMA (Tri-methyl-amine, $(CH_3)_3N)$ of $20{\sim}25wt%$ as a low temperature latent heat storage material. The results showed that the phase change temperature and the specific heat is increased and the supercooling degree is decreased as the weight concentration of TMA increased. Especially, the clathrate compound containing TMA 25wt% has the average phase change temperature of $5.8^{\circ}C$, the supercooling degree of $8.0^{\circ}C$ and the specific heat of 3.499 kJ/kgK in the cooling process. This can lead to reduction of operation time of refrigerator in low temperature latent heat storage system and efficiency improvement of refrigerator COP and overall system. Therefore, energy saving and improvement of utilization efficiency are expected.

  • PDF

The Effects of Additives on the Cooling Characteristic of a Clathrate Compound (포접화합물의 냉각특성에 대한 첨가제의 영향)

  • Kim Jin Heung;Chung Nak Kyu;Kim Suk Hyun;Kim Chang Oh
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.125-130
    • /
    • 2005
  • This study was peformed to investigate the phase change temperature, the supercooling, the maintenance time of liquid phase and the change rate of volume of TMA 30 $wt\% clathrate compound with additives. TMA 30 $wt\% clathrate compound with additive was cooled at heat source temperature of $-6^{circ}C$. The additives are ethylene glycol and chloroform. Their concentration are 0.1$wt\% respectively. The experimental results showed that the phase change temperature was not affected by additives and this was average $5.3^{circ}C$. Also the supercooling and the maintenance time of liquid phase were decreased by additives. Especially, the average value of supercooling showed by $8.8^{circ}C$ and the maintenance time of liquid phase was by 19 minutes in the case of chloroform 0.1$wt\%. Additionally, the average change rate of volume showed by $1.26{\~}1.31\%$ according to additives and the volume was decreased by the phase change from liquid to solid.

The Cooling Characteristics of Clathrate Compound according to Concentration of TMA

  • Lee, Jong-In;Kim, Chang-Oh;Chung, Nak-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.1
    • /
    • pp.32-36
    • /
    • 2009
  • The ice storage system uses water for low temperature latent heat storage. However, a refrigerator capacity is increased and COP is decreased due to supercooling of water in the course of phase change from solid to liquid. This study investigates the cooling characteristics of the TMA-water clathrate compound including TMA (Tri-methyl-amine, $(CH_3)_3N$) of $20{\sim}25wt%$ as a low temperature latent heat storage material. The results showed that the phase change temperature and the specific heat is increased and the supercooling degree is decreased as the weight concentration of TMA increased. Especially, the clathrate compound containing TMA 25 wt% has the average phase change tempera ture of $5.8^{\circ}C$, the supercooling degree of $8.0^{\circ}C$ and the specific heat of 3.499 kJ/kgK in the cooling process. This can lead to reduction of operation time of refrigerator in low temperature latent heat storage system and efficiency improvement of refrigerator COP and overall system. Therefore, energy saving and improvement of utilization efficiency are expected.

The Effects of an Additive on the Thermal Properties of a Clathrate Compound (III) - The Case of TMA Clathrate Compound with Acetone - (포접화합물의 열물성에 미치는 첨가제의 효과 (III) - TMA 물계 포접화합물에 Acetone을 첨가한 경우 -)

  • Kim Jin Heung;Chung Nak Kyu;Kim Suk Hyun;Kim Chang Oh;Kang Seung Hyeon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1183-1189
    • /
    • 2004
  • An experimental investigation is conducted to measure phase change temperature and supercooling when acetone is added to TMA 30 wt% clathrate during cooling process in heat source. Also rate of volume change is investigated when acetone is added to TMA 30 wt% clathrate during the cooling process in heat source -8$^{\circ}C$. The results show that phase change temperature is about 4.5~5.5$^{\circ}C$ when acetone is added to TMA 30 wt% clathrate during the cooling process for heat sink temperature of -6, -7$^{\circ}C$ and -8$^{\circ}C$. Supercooling is repressed about 2~1$0^{\circ}C$ when 0.08 wt% acetone is added to it and rate of volume change is decreased about 2.9% when 0.1 wt% acetone is added for the heat sink temperature of -8$^{\circ}C$.