• 제목/요약/키워드: Classify Algorithm

검색결과 904건 처리시간 0.028초

표면 근전도를 이용한 Artificial Neural Network 기반의 동작 분류 알고리즘 (Artificial Neural Network based Motion Classification Algorithm using Surface Electromyogram)

  • 정의철;김서준;송영록;이상민
    • 재활복지공학회논문지
    • /
    • 제6권1호
    • /
    • pp.67-73
    • /
    • 2012
  • 본 논문에서는 표면 근전도 신호를 사용하여 손목 움직임의 동작을 분류하기 위해 인공 신경 회로망(ANN : Artificial Neural Network)기반의 동작 분류 알고리즘을 제안한다. 손목 움직임에 무리가 없는 20~30대 성인 26명을 대상으로 척측 수근 굴근과 척측 수근 신근에 부착한 2채널의 전극으로부터 표면 근전도 신호를 취득하고, 취득한 근전도로부터 손목의 굴곡, 신전, 내전, 외전, 휴식 다섯 동작을 인식한다. 빠른 처리 속도를 위해 획득한 신호로부터 시간 영역에서의 특징점을 추출하고 ANN을 이용한 동작 분류에 사용된다. 특징점으로 DAMV, DASDV, MAV, RMS를 사용하였으며, ANN 기반의 동작 분류의 인식율은 DAMV는 98.03%, DASDV는 97.97%, MAV는 96.95%, 그리고 RMS는 96.82%의 정확도를 나타낸다.

  • PDF

스트립을 이용한 뇨분석 시스템의 퍼지 분류기 및 자동 튜닝 구현 (Implementation of Fuzzy Classifier and Automatic Turning for Urine Analyzer System using the Strip)

  • 김건우;이승진;김광년;최병철;예수영;전계록;조진욱;김재형;이권순
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1998년도 추계학술대회
    • /
    • pp.141-142
    • /
    • 1998
  • The urine analysis system implemented to measuring the primary color reaction of urinalysis strip. Fuzzy classifier based on fuzzy theory implemented so as to classify of 9 items in the urinalysis strip and proposed the automatic turning algorithm of mambership function in the fuzzy classifier to progress the reproduction of classify. To evaluation of clinical capability, the fuzzy classifier and automatic turning algorithm apples to standard strip and standard reagent.

  • PDF

퍼지 분류기 기반 지능형 차단 시스템 (Intelligent Diagnosis System Based on Fuzzy Classifier)

  • 성화창;박진배;소제윤;주영훈
    • 한국지능시스템학회논문지
    • /
    • 제17권4호
    • /
    • pp.534-539
    • /
    • 2007
  • 본 논문에서는 저압 배선 진단 시스템 개발을 위한 지능형 차단 시스템을 제안한다. 제안된 배선 진단 시스템은 TFDR(Time-Frequency Domain Reflectometry) 알고리즘을 통해 배선이 어떤 상태인지를 보여 주는 시스템이다. 그리고 제안된 진단 시스템으로부터 얻은 신호를 분석하여 이상 종류에 따라 분류하는 시스템을 통해 지능형 차단 시스템을 제안한다. 일반적으로, TFDR을 통해 알아 낼 수 있는 이상의 종류는 damage, open 그리고 short 이다. 각 상황에 대한 효율적인 분류를 위하여 IF-THEN 규칙에 기반 한 분류기가 사용된다. 기존 TFDR이 수행되었던 통신선 케이블의 실험 데이터에 기반 한 실험을 통해 본 제안 내용의 우수성을 보이게 된다.

신경망을 이용한 최적 패턴인식 및 분류 (The optimum pattern recognition and classification using neural networks)

  • 김진환;서보혁;박성욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.92-94
    • /
    • 2004
  • We become an industry information society which is advanced to the altitude with the today. The information to be loading various goods each other together at a circumstance environment is increasing extremely. The restriction recognizes the data of many Quantity and it follows because the human deals the task to classify. The development of a mathematical formulation for solving a problem like this is often very difficult. But Artificial intelligent systems such as neural networks have been successfully applied to solving complex problems in the area of pattern recognition and classification. So, in this paper a neural network approach is used to recognize and classification problem was broken into two steps. The first step consist of using a neural network to recognize the existence of purpose pattern. The second step consist of a neural network to classify the kind of the first step pattern. The neural network leaning algorithm is to use error back-propagation algorithm and to find the weight and the bias of optimum. Finally two step simulation are presented showing the efficacy of using neural networks for purpose recognition and classification.

  • PDF

기둥축소량 보정을 위한 기둥의 최적그루핑기법 (The Optimal Column Grouping Technique for the Compensation of Column Shortening)

  • 김영민
    • 한국전산구조공학회논문집
    • /
    • 제24권2호
    • /
    • pp.141-148
    • /
    • 2011
  • 본 논문에서는 기둥축소량 보정의 효율성을 증진시키기 위한 방안으로서 유사한 축소 경향을 보이는 기둥들을 동일 그룹으로 묶는 기둥의 최적그루핑기법에 대하여 연구하였다. 기둥의 최적그루핑은 무감독학습에 의해 입력데이타의 패턴을 스스로 분류할 수 있는 코호넨의 자기조직화 형상지도 알고리즘을 이용하였다. 본 연구에 적용된 코호넨 네트워크는 두 개의 입력뉴런과 분류할 기둥그룹 개수만큼의 출력뉴런으로 구성된다. 입력뉴런에는 기둥축소량의 정규화된 평균과 표준편차가 입력되며, 출력뉴런에는 각 기둥이 속하게 될 기둥그룹이 출력된다. 제안된 알고리즘을 실제 축소량 해석이 수행된 두 개의 건물에 적용하여 그 적용성을 평가하였다. 적용결과 동일 그룹으로 분류된 기둥들은 서로 인접하고 있으며 서로 다른 기둥그룹끼리는 교차하지 않는 등 유사한 축소 경향을 보였다. 이로부터 본 연구의 기둥축소량의 최적그루핑 알고리즘은 충분한 실무적용성이 있음을 확인하였다.

무선 환경에서 802.11 MAC의 MIB 정보를 이용한 TCP 성능 개선 방법 (TCP Performance Improvement Scheme Using 802.11 MAC MIB in the Wireless Environment)

  • 신광식;김기원;윤준철;김경섭;장문석;최상방
    • 한국통신학회논문지
    • /
    • 제33권7B호
    • /
    • pp.477-487
    • /
    • 2008
  • TCP에서의 혼잡제어는 패킷 손실이 발생하면 이를 네트워크의 혼잡상황으로 판단해서 전송률을 줄인다. 무선 네트워크에서는 채널 에러로 인해 패킷 손실이 발생하는데, 기존의 유선환경에서의 TCP는 이를 혼잡으로 인한 손실로 착각하여 성능을 떨어뜨리는 결과를 초래한다. 그러므로 유 무선 통합네트워크에서의 TCP 성능 저하를 막기 위해 혼잡손실과 무선손실을 구별하는 연구가 진행되고 있다. 기존의 무선 TCP에 대한 연구는 주로 패킷이 전달되는 시간의 변화를 통해 네트워크의 혼잡상황을 유추해서 패킷 손실 시 혼잡손실과 무선손실을 예측하지만, 패킷의 전송시간은 여러 가지 다른 요인에 영향을 받기 때문에 정확한 손실구분은 불가능하다. 그러므로 본 논문에서는 IEEE 802.11 MAC에서 정의하고 있는 MIB(Management Information Base)의 무선손실 정보를 이용하여 유선손실과 무선손실을 구별하는 알고리즘을 제안한다. MAC 계층의 MIB를 수집하여 사용하는 제안된 알고리즘과 패킷의 지연 시간을 이용하는 기존의 알고리즘을 시뮬레이션을 통하여 비교하고 분석한 결과 무선 채널에서의 에러율이 10%인 경우에, Spike 알고리즘에 비해 12%, mBiaz 알고리즘에 비해 32%의 성능 향상을 보였다.

공급사슬 네트워크 설계를 위한 협력적 공진화 알고리즘에서 집단들간 상호작용방식에 관한 연구 (A Study on Interaction Modes among Populations in Cooperative Coevolutionary Algorithm for Supply Chain Network Design)

  • 한용호
    • 경영과학
    • /
    • 제31권3호
    • /
    • pp.113-130
    • /
    • 2014
  • Cooperative coevolutionary algorithm (CCEA) has proven to be a very powerful means of solving optimization problems through problem decomposition. CCEA implies the use of several populations, each population having the aim of finding a partial solution for a component of the considered problem. Populations evolve separately and they interact only when individuals are evaluated. Interactions are made to obtain complete solutions by combining partial solutions, or collaborators, from each of the populations. In this respect, we can think of various interaction modes. The goal of this research is to develop a CCEA for a supply chain network design (SCND) problem and identify which interaction mode gives the best performance for this problem. We present general design principle of CCEA for the SCND problem, which require several co-evolving populations. We classify these populations into two groups and classify the collaborator selection scheme into two types, the random-based one and the best fitness-based one. By combining both two groups of population and two types of collaborator selection schemes, we consider four possible interaction modes. We also consider two modes of updating populations, the sequential mode and the parallel mode. Therefore, by combining both four possible interaction modes and two modes of updating populations, we investigate seven possible solution algorithms. Experiments for each of these solution algorithms are conducted on a few test problems. The results show that the mode of the best fitness-based collaborator applied to both groups of populations combined with the sequential update mode outperforms the other modes for all the test problems.

자율주행 개인화를 위한 순환 최소자승 기반 융합형 주행특성 구분 알고리즘 (A RLS-based Convergent Algorithm for Driving Characteristic Classification for Personalized Autonomous Driving)

  • 오광석
    • 한국융합학회논문지
    • /
    • 제8권9호
    • /
    • pp.285-292
    • /
    • 2017
  • 본 논문은 자율주행 개인화를 위한 순환 최소자승 기반 융합형 종방향 주행특성 구분 알고리즘에 관한 연구이다. 최근 자율주행 기술은 Level 4 완전 자율주행 단계를 위해 다양한 연구가 수행되고 있다. 자율주행 자동차의 상용화를 위해서는 탑승자의 자율주행에 대한 이질감을 최소화할 수 있어야 하며 이를 위해 자율주행 개인화 기술이 필요하다. 이 문제를 해결하기 위해 본 연구에서는 운전자의 종방향 주행특성을 수학적으로 표현하고 순환 최소자승 기법 기반 실 주행 데이터를 이용하여 주행특성을 도출하는 알고리즘을 제안하였다. 두 명의 실제 운전자 데이터를 이용하여 종방향 주행특성을 도출하였으며 두 명의 운전자를 구분하기 위해 가설검정 기반 확률적 구분 알고리즘을 적용하였다. 제안된 종방향 주행특성 도출 및 구분 알고리즘은 개별 운전자의 주행특성을 합리적으로 나타낼 수 있었으며 가설검정 기반 확률적 구분기법에 의해 주행특성이 구분될 수 있음을 확인하였다.

영역 확장 기법과 오류 역전파 알고리즘을 이용한 자궁경부 세포진 영역 분할 및 인식 (Nucleus Segmentation and Recognition of Uterine Cervical Pop-Smears using Region Growing Technique and Backpropagation Algorithm)

  • 김광백;김성신
    • 한국정보통신학회논문지
    • /
    • 제10권6호
    • /
    • pp.1153-1158
    • /
    • 2006
  • 자궁 경부 세포진 영상의 핵 영역 분할은 자궁 경부암 자동화 검색 시스템의 가장 어렵고도 중요한 분야로 알려져 있다. 자궁 경부 세포진 영상은 배경과 세포의 영역이 확실히 구분되지 않는 경우가 많기 때문에 이들을 확실히 구분하는 것이 매우 중요하다. 본 논문에서는 이러한 문제점을 해결하기 위해 자궁 경부 세포진 영상에서 Region growing 기법을 적용하여 세포 영상을 분할한다. Region growing 기법은 화소간의 유사도를 측정하여 영역을 확장하여 분할하는 방법이다. 세포와 배경이 분할된 영상을 일정 임계값을 이용하여 영상을 이진화 한 후, 8방향 윤곽선 추적 알고리즘을 이용해 세포 영역을 추출한다. 추출된 세포 영역을 원 영상인 RGB 컬러로 변환한 후에 K-means 알고리즘을 적용하여 각 세포 영역의 RGB 화소를 R, G, B 채널로 각각 분리하여 클러스터링 한다. 클러스터링된 각 각의 R, G, B 채널의 클러스터 값을 이용하여 HSI 모델로 변환시킨 후에 세포핵 영역의 Hue 정보를 추출한다. 추출된 세포핵의 특징을 오류 역전파 알고리즘을 적용하여 정상 세포와 비정상 세포를 분류하고 인식한다.

Kapur 방법과 형태학적 특징을 이용한 자궁경부암 세포 추출 및 인식 (Detection and Recognition of Uterine Cervical Carcinoma Cells in Pap Smear Using Kapur Method and Morphological Features)

  • 김광백
    • 한국정보통신학회논문지
    • /
    • 제11권10호
    • /
    • pp.1992-1998
    • /
    • 2007
  • 자궁 경부 세포진 영상의 효과적인 세포핵 영역 추출과 인식 및 분류를 위해서는 세포진 영상의 배경 그리고 세포핵과 세포질 영역의 정확한 구분이 중요하다. 본 논문에서는 자궁 경부 세포진 영상에서 세포핵 영역과 배경을 효과적으로 분할하기 위 해 Median 필터를 적용하여 전체적인 영상의 명암값을 보정한 후, Gaussian 필터를 적용하여 그레이 영상에서 존재하는 잡음을 제거한다. Kapur 방법을 통해 배경과 세포의 엔트로피 누적 확률을 이용하여 영상을 이진화 한다. 자궁 경부진 영상에서는 군집화된 세포 영 역 이 빈번하게 나타난다. 군집화가 심화된 세포영역에서는 그 영역의 평균 명암도 값을 이용하여 세밀하게 영역을 재분할 한다. 그런 후, 미세잡음을 제거하기 위해 $3{\times}3$ 마스크를 적용하여 미세한 잡음을 제거 한 후, 8 방향 윤곽선 추적 알고리즘을 적용하여 분할된 영역에서 세포들의 후보영역을 추출한다. 추출된 세포영역은 크기, 면적 비율, 핵 외곽의 방향성 정보를 이용하여 정상 세포와 암세포를 인식 및 분류한다. 실험 결과에서는 제안된 방법의 성능이 전문의와 소견과 비교적 근접한 것을 보여준다.