• 제목/요약/키워드: Classify Algorithm

검색결과 902건 처리시간 0.025초

자기 조직화 신경망을 이용한 클러스터링 알고리듬 (A Clustering Algorithm using Self-Organizing Feature Maps)

  • 이종섭;강맹규
    • 대한산업공학회지
    • /
    • 제31권3호
    • /
    • pp.257-264
    • /
    • 2005
  • This paper suggests a heuristic algorithm for the clustering problem. Clustering involves grouping similar objects into a cluster. Clustering is used in a wide variety of fields including data mining, marketing, and biology. Until now there are a lot of approaches using Self-Organizing Feature Maps(SOFMs). But they have problems with a small output-layer nodes and initial weight. For example, one of them is a one-dimension map of k output-layer nodes, if they want to make k clusters. This approach has problems to classify elaboratively. This paper suggests one-dimensional output-layer nodes in SOFMs. The number of output-layer nodes is more than those of clusters intended to find and the order of output-layer nodes is ascending in the sum of the output-layer node's weight. We can find input data in SOFMs output node and classify input data in output nodes using Euclidean distance. We use the well known IRIS data as an experimental data. Unsupervised clustering of IRIS data typically results in 15 - 17 clustering error. However, the proposed algorithm has only six clustering errors.

K-means based Clustering Method with a Fixed Number of Cluster Members

  • Yi, Faliu;Moon, Inkyu
    • 한국멀티미디어학회논문지
    • /
    • 제17권10호
    • /
    • pp.1160-1170
    • /
    • 2014
  • Clustering methods are very useful in many fields such as data mining, classification, and object recognition. Both the supervised and unsupervised grouping approaches can classify a series of sample data with a predefined or automatically assigned cluster number. However, there is no constraint on the number of elements for each cluster. Numbers of cluster members for each cluster obtained from clustering schemes are usually random. Thus, some clusters possess a large number of elements whereas others only have a few members. In some areas such as logistics management, a fixed number of members are preferred for each cluster or logistic center. Consequently, it is necessary to design a clustering method that can automatically adjust the number of group elements. In this paper, a k-means based clustering method with a fixed number of cluster members is proposed. In the proposed method, first, the data samples are clustered using the k-means algorithm. Then, the number of group elements is adjusted by employing a greedy strategy. Experimental results demonstrate that the proposed clustering scheme can classify data samples efficiently for a fixed number of cluster members.

곡가공 프로세스를 고려한 곡판 분류 알고리즘 (An Algorithm of Curved Hull Plates Classification for the Curved Hull Plates Forming Process)

  • 노재규;신종계
    • 대한조선학회논문집
    • /
    • 제46권6호
    • /
    • pp.675-687
    • /
    • 2009
  • In general, the forming process of the curved hull plates consists of sub tasks, such as roll bending, line heating, and triangle heating. In order to complement the automated curved hull forming system, it is necessary to develop an algorithm to classify the curved hull plates of a ship into standard shapes with respect to the techniques of forming task, such as the roll bending, the line heating, and the triangle heating. In this paper, the curved hull plates are classified by four standard shapes and the combination of them, or saddle, convex, flat, cylindrical shape, and the combination of them, that are related to the forming tasks necessary to form the shapes. In preprocessing, the Gaussian curvature and the mean curvature at the mid-point of a mesh of modeling surface by Coon's patch are calculated. Then the nearest neighbor method to classify the input plate type is applied. Tests to verify the developed algorithm with sample plates of a real ship data have been performed.

Development of An Inventory to Classify Task Commitment Type in Science Learning and Its Application to Classify Students' Types

  • Kim, Won-Jung;Byeon, Jung-Ho;Kwon, Yong-Ju
    • 한국과학교육학회지
    • /
    • 제33권3호
    • /
    • pp.679-693
    • /
    • 2013
  • The purpose of this study is to develop an inventory to classify task commitment types of science learning and to classify highschool students' task commitment types. Firstly, inventory questions were designed following the literature analysis on the task commitment components which involve self confidence, high goal setting, and focused attention. Prototype inventory underwent the content validity test, pilot test, and reliability test. Through these steps, final inventory was input to 462 high school students and underwent the factor analysis and cluster analysis. Factor analysis confirmed three components of task commitment as the three factors of inventory questions. In order to find how many clusters exist, factors of developed inventory became new variables. Each factor's factor mean was calculated and served as the new variable of the cluster analysis. Cluster analysis extracted five clusters as task commitment types. The 5 clusters were suggested by the agglomarative schedule and dendrogram gained from a hierarchical cluster analysis with the setting of the Ward algorithm and Squared Euclidean distance. Based on the factor mean score, traits of each cluster could be drawn out. Inventory developed by this study is expected to be used to identify student commitment types and assess the effectiveness of task commitment enhancement programs.

fMRI를 이용한 맛의 입력패턴벡터 추출 및 패턴인식 (Input Pattern Vector Extraction and Pattern Recognition of Taste using fMRI)

  • 이선엽;이용구;김기동
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제30권4호
    • /
    • pp.419-426
    • /
    • 2007
  • 본 논문에서는 맛 인식을 위한 입력패턴벡터를 추출하고 패턴인식을 위한 맛(쓴맛, 단맛, 신맛, 짠맛)학습 알고리즘을 설계하였다. 입력패턴벡터의 구성을 위해 맛 활성화 신호의 세기가 사용되었고, 맛 패턴인식을 위한 알고리즘은 초기 참조벡터의 학습을 위해 SOM을 이용하였고, 종속 부류층의 출력뉴런의 부류지정을 위하여 out-star 학습법을 사용하였다. 제안된 알고리즘의 입력 층과 종속 클래스 층 사이의 연결강도는 SOM과 LVQ 알고리즘을 이용하여 초기 참조벡터의 설정 및 학습이 가능하게 하였다. 패턴벡터는 종속 부류층의 뉴런에 의해 종속 클래스로 분류하고, 종속 클래스 층과 출력 층 사이의 연결강도는 분류된 종속 부류를 클래스로 지정하는 학습을 하게 하였다. 패턴 분류를 위하여 제안된 학습알고리즘을 이용하여 시뮬레이션 되었고 기존의 LVQ 학습방식보다 우수한 분류성공률을 확인하였다.

  • PDF

곡가공을 위한 임의 다각형 곡판 분류 알고리즘 연구 (A Study on Classification Algorithm of Arbitrary Polygon Curved Hull Plates for the Curved Hull Plates Forming)

  • 김찬석;손승혁;신종계;노재규
    • 대한조선학회논문집
    • /
    • 제51권4호
    • /
    • pp.342-348
    • /
    • 2014
  • In general, the forming process of the curved hull plates consists of sub tasks, such as roll bending, line heating, and triangle heating. In order to complement the automated curved hull forming system, it is necessary to develop an algorithm to classify the curved hull plates of a ship into standard shapes with respect to the techniques of forming task, such as the roll bending, the line heating, and the triangle heating. In the previous research, the classification algorithm of curved hull plates was studied only about rectangle shaped plates, and other limitations were notified. In this paper, the classification algorithm is extended to classify not only rectangle shaped plates but also arbitrary polygon hull plates. The discrete curvature can be computed by using arbitrary polygon mesh which is represented by half-edge data structure and discrete differential geometry. The algorithm tests to verify the developed algorithm with sample plates of a real ship data have been performed.

뇌파의 입력패턴벡터 추출 및 패턴인식 (Input Pattern Vector Extraction and Pattern Recognition of EEG)

  • 이용구;이선엽;최우승
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권5호
    • /
    • pp.95-103
    • /
    • 2006
  • 본 논문에서는 뇌파인식을 위한 입력패턴벡터를 추출하고 패턴인식을 위한 뇌파 학습 알고리즘을 설계하였다. 입력패턴벡터의 구성을 위해 알파리듬과 베타리듬의 주파수와 진폭이 사용되었고, 뇌파패턴인식을 위한 알고리즘은 초기 참조벡터의 학습을 위해 SOM을 이용하고, 종속 부류층의 출력뉴런의 부류지정을 위하여 out-star 학습법을 사용하였다. 제안된 알고리즘의 입력 층과 종속 클래스 층 사이의 연결강도는 SOM과 LVQ 알고리즘을 이용하여 초기 참조벡터의 설정 및 학습이 가능하게 하였고, 패턴벡터를 종속 부류층의 뉴런에 의해 종속 클래스로 분류하고, 종속 클래스 층과 출력 층 사이의 연결강도는 분류된 종속 부류를 클래스로 지정하는 학습을 하게 된다. 뇌파 패턴 분류를 위하여 제안된 학습알고리즘을 이용하여 시뮬레이션 되었고 기존의 LVQ 학습방식보다 우수한 분류성공률을 확인하였다.

  • PDF

다중 이벤트 센서 기반 스마트 홈에서 사람 행동 분류를 위한 효율적 의사결정평면 생성기법 (Efficient Hyperplane Generation Techniques for Human Activity Classification in Multiple-Event Sensors Based Smart Home)

  • 장준서;김보국;문창일;이도현;곽준호;박대진;정유수
    • 대한임베디드공학회논문지
    • /
    • 제14권5호
    • /
    • pp.277-286
    • /
    • 2019
  • In this paper, we propose an efficient hyperplane generation technique to classify human activity from combination of events and sequence information obtained from multiple-event sensors. By generating hyperplane efficiently, our machine learning algorithm classify with less memory and run time than the LSVM (Linear Support Vector Machine) for embedded system. Because the fact that light weight and high speed algorithm is one of the most critical issue in the IoT, the study can be applied to smart home to predict human activity and provide related services. Our approach is based on reducing numbers of hyperplanes and utilizing robust string comparing algorithm. The proposed method results in reduction of memory consumption compared to the conventional ML (Machine Learning) algorithms; 252 times to LSVM and 34,033 times to LSTM (Long Short-Term Memory), although accuracy is decreased slightly. Thus our method showed outstanding performance on accuracy per hyperplane; 240 times to LSVM and 30,520 times to LSTM. The binarized image is then divided into groups, where each groups are converted to binary number, in order to reduce the number of comparison done in runtime process. The binary numbers are then converted to string. The test data is evaluated by converting to string and measuring similarity between hyperplanes using Levenshtein algorithm, which is a robust dynamic string comparing algorithm. This technique reduces runtime and enables the proposed algorithm to become 27% faster than LSVM, and 90% faster than LSTM.

Development of Pattern Classifying System for cDNA-Chip Image Data Analysis

  • Kim, Dae-Wook;Park, Chang-Hyun;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.838-841
    • /
    • 2005
  • DNA Chip is able to show DNA-Data that includes diseases of sample to User by using complementary characters of DNA. So this paper studied Neural Network algorithm for Image data processing of DNA-chip. DNA chip outputs image data of colors and intensities of lights when some sample DNA is putted on DNA-chip, and we can classify pattern of these image data on user pc environment through artificial neural network and some of image processing algorithms. Ultimate aim is developing of pattern classifying algorithm, simulating this algorithm and so getting information of one's diseases through applying this algorithm. Namely, this paper study artificial neural network algorithm for classifying pattern of image data that is obtained from DNA-chip. And, by using histogram, gradient edge, ANN and learning algorithm, we can analyze and classifying pattern of this DNA-chip image data. so we are able to monitor, and simulating this algorithm.

  • PDF

An Improved Automated Spectral Clustering Algorithm

  • Xiaodan Lv
    • Journal of Information Processing Systems
    • /
    • 제20권2호
    • /
    • pp.185-199
    • /
    • 2024
  • In this paper, an improved automated spectral clustering (IASC) algorithm is proposed to address the limitations of the traditional spectral clustering (TSC) algorithm, particularly its inability to automatically determine the number of clusters. Firstly, a cluster number evaluation factor based on the optimal clustering principle is proposed. By iterating through different k values, the value corresponding to the largest evaluation factor was selected as the first-rank number of clusters. Secondly, the IASC algorithm adopts a density-sensitive distance to measure the similarity between the sample points. This rendered a high similarity to the data distributed in the same high-density area. Thirdly, to improve clustering accuracy, the IASC algorithm uses the cosine angle classification method instead of K-means to classify the eigenvectors. Six algorithms-K-means, fuzzy C-means, TSC, EIGENGAP, DBSCAN, and density peak-were compared with the proposed algorithm on six datasets. The results show that the IASC algorithm not only automatically determines the number of clusters but also obtains better clustering accuracy on both synthetic and UCI datasets.