• Title/Summary/Keyword: Classifier algorithm

검색결과 722건 처리시간 0.024초

퍼지 신경 회로망을 이용한 패턴 분류기의 설계 (Design of the Pattern Classifier using Fuzzy Neural Network)

  • 김문환;이호재;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2573-2575
    • /
    • 2003
  • In this paper, we discuss a fuzzy neural network classifier with immune algorithm. The fuzzy neural network classifier is constructed with the fuzzy classifier and the neural network classifier based on fuzzy rules. To maximize performance of classifier, the immune algorithm and the back propagation algorithm are used. For the generalized classification ability, the simulation results from the iris data demonstrate superiority of the proposed classifier in comparison with other classifier.

  • PDF

차분진화 알고리즘을 이용한 Nearest Prototype Classifier 설계 (Design of Nearest Prototype Classifier by using Differential Evolutionary Algorithm)

  • 노석범;안태천
    • 한국지능시스템학회논문지
    • /
    • 제21권4호
    • /
    • pp.487-492
    • /
    • 2011
  • 본 논문에서는 가장 단순한 구조를 가진 Nearest Prototype Classifier의 성능 개선을 위해 차분 진화 알고리즘을 적용하여 prototype의 위치를 결정하는 방법을 제안하였다. 차분 진화 알고리즘을 이용하여 prototype의 위치 벡터가 결정이 되며, 차분 진화 알고리즘에 의해 결정된 prototype의 class label을 결정하기 위한 class label 결정 알고리즘도 제안하였다. 제안된 알고리즘의 성능 평가를 위해 기존의 패턴 분류기와 비교 결과를 보인다.

A New Approach to the Design of Combining Classifier Based on Immune Algorithm

  • Kim, Moon-Hwan;Jeong, Keun-Ho;Joo, Young-Hoon;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1272-1277
    • /
    • 2003
  • This paper presents a method for combining classifier which is constructed by fuzzy and neural network classifiers and uses classifier fusion algorithms and selection algorithms. The input space of combing classifier is divided by the extended hyperbox region proposed in this paper to guarantee non-overlapped data property. To fuse the fuzzy classifier and the neural network classifier, we propose the fusion parameter for the overlapped data. In addition, the adaptive learning algorithm also proposed to maximize classifier performance. Finally, simulation examples are given to illustrate the effectiveness of the method.

  • PDF

An Improvement of AdaBoost using Boundary Classifier

  • 이원주;천민규;현창호;박민용
    • 한국지능시스템학회논문지
    • /
    • 제23권2호
    • /
    • pp.166-171
    • /
    • 2013
  • The method proposed in this paper can improve the performance of the Boosting algorithm in machine learning. The proposed Boundary AdaBoost algorithm can make up for the weak points of Normal binary classifier using threshold boundary concepts. The new proposed boundary can be located near the threshold of the binary classifier. The proposed algorithm improves classification in areas where Normal binary classifier is weak. Thus, the optimal boundary final classifier can decrease error rates classified with more reasonable features. Finally, this paper derives the new algorithm's optimal solution, and it demonstrates how classifier accuracy can be improved using the proposed Boundary AdaBoost in a simulation experiment of pedestrian detection using 10-fold cross validation.

An Approach to Combining Classifier with MIMO Fuzzy Model

  • Kim, Do-Wan;Park, Jin-Bae;Lee, Yeon-Woo;Joo, Young-Hoon
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.182-185
    • /
    • 2003
  • This paper presents a new design algorithm for the combination with the fuzzy classifier and the Bayesian classifier. Only few attempts have so far been made at providing an effective design algorithm combining the advantages and removing the disadvantages of two classifiers. Specifically, the suggested algorithms are composed of three steps: the combining, the fuzzy-set-based pruning, and the fuzzy set tuning. In the combining, the multi-inputs and multi-outputs (MIMO) fuzzy model is used to combine two classifiers. In the fuzzy-set-based pruning, to effectively decrease the complexity of the fuzzy-Bayesian classifier and the risk of the overfitting, the analysis method of the fuzzy set and the recursive pruning method are proposesd. In the fuzzy set tuning for the misclassified feature vectors, the premise parameters are adjusted by using the gradient decent algorithm. Finally, to show the feasibility and the validity of the proposed algorithm, a computer simulation is provided.

  • PDF

군집화와 유전 알고리즘을 이용한 거친-섬세한 분류기 앙상블 선택 (Coarse-to-fine Classifier Ensemble Selection using Clustering and Genetic Algorithms)

  • 김영원;오일석
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권9호
    • /
    • pp.857-868
    • /
    • 2007
  • 좋은 분류기 앙상블은 분류기간에 상호 보완성을 갖추어 높은 인식 성능을 보여야 하며, 크기가 작아 계산 효율이 좋아야 한다. 이 논문은 이러한 목적을 달성하기 위한 거친-섬세한 (coarse-to-fine)단계를 밟는 분류기 앙상블 선택 방법을 제안한다. 이 방법이 성공하기 위해서는 초기 분류기 풀 (pool)이 충분히 다양해야 한다. 이 논문에서는 여러 개의 서로 다른 분류 알고리즘과 아주 많은 수의 특징 부분집합을 결합하여 충분히 큰 분류기 풀을 생성한다. 거친 선택 단계에서는 분류기 풀의 크기를 적절하게 줄이는 것이 목적이다. 분류기 군집화 알고리즘을 사용하여 다양성을 최소로 희생하는 조건하에 분류기 풀의 크기를 줄인다. 섬세한 선택에서는 유전 알고리즘을 이용하여 최적의 앙상블을 찾는다. 또한 탐색 성능이 개선된 혼합 유전 알고리즘을 제안한다. 널리 사용되는 필기 숫자 데이타베이스를 이용하여 기존의 단일 단계 방법과 제안한 두 단계 방법의 성능을 비교한 결과 제안한 알고리즘이 우수함을 입증하였다.

혼합 약한 분류기를 이용한 AdaBoost 알고리즘의 성능 개선 방법 (A Method to Improve the Performance of Adaboost Algorithm by Using Mixed Weak Classifier)

  • 김정현;등죽;김진영;강동중
    • 제어로봇시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.457-464
    • /
    • 2009
  • The weak classifier of AdaBoost algorithm is a central classification element that uses a single criterion separating positive and negative learning candidates. Finding the best criterion to separate two feature distributions influences learning capacity of the algorithm. A common way to classify the distributions is to use the mean value of the features. However, positive and negative distributions of Haar-like feature as an image descriptor are hard to classify by a single threshold. The poor classification ability of the single threshold also increases the number of boosting operations, and finally results in a poor classifier. This paper proposes a weak classifier that uses multiple criterions by adding a probabilistic criterion of the positive candidate distribution with the conventional mean classifier: the positive distribution has low variation and the values are closer to the mean while the negative distribution has large variation and values are widely spread. The difference in the variance for the positive and negative distributions is used as an additional criterion. In the learning procedure, we use a new classifier that provides a better classifier between them by selective switching between the mean and standard deviation. We call this new type of combined classifier the "Mixed Weak Classifier". The proposed weak classifier is more robust than the mean classifier alone and decreases the number of boosting operations to be converged.

A New Incremental Learning Algorithm with Probabilistic Weights Using Extended Data Expression

  • Yang, Kwangmo;Kolesnikova, Anastasiya;Lee, Won Don
    • Journal of information and communication convergence engineering
    • /
    • 제11권4호
    • /
    • pp.258-267
    • /
    • 2013
  • New incremental learning algorithm using extended data expression, based on probabilistic compounding, is presented in this paper. Incremental learning algorithm generates an ensemble of weak classifiers and compounds these classifiers to a strong classifier, using a weighted majority voting, to improve classification performance. We introduce new probabilistic weighted majority voting founded on extended data expression. In this case class distribution of the output is used to compound classifiers. UChoo, a decision tree classifier for extended data expression, is used as a base classifier, as it allows obtaining extended output expression that defines class distribution of the output. Extended data expression and UChoo classifier are powerful techniques in classification and rule refinement problem. In this paper extended data expression is applied to obtain probabilistic results with probabilistic majority voting. To show performance advantages, new algorithm is compared with Learn++, an incremental ensemble-based algorithm.

기상레이더를 이용한 뉴로-퍼지 알고리즘 기반 강수/비강수 패턴분류 시스템 설계 : 사례 분류기 및 에코 분류기 (Design of Precipitation/non-precipitation Pattern Classification System based on Neuro-fuzzy Algorithm using Meteorological Radar Data : Instance Classifier and Echo Classifier)

  • 고준현;김현기;오성권
    • 전기학회논문지
    • /
    • 제64권7호
    • /
    • pp.1114-1124
    • /
    • 2015
  • In this paper, precipitation / non-precipitation pattern classification of meteorological radar data is conducted by using neuro-fuzzy algorithm. Structure expression of meteorological radar data information is analyzed in order to effectively classify precipitation and non-precipitation. Also diverse input variables for designing pattern classifier could be considered by exploiting the quantitative as well as qualitative characteristic of meteorological radar data information and then each characteristic of input variables is analyzed. Preferred pattern classifier can be designed by essential input variables that give a decisive effect on output performance as well as model architecture. As the proposed model architecture, neuro-fuzzy algorithm is designed by using FCM-based radial basis function neural network(RBFNN). Two parts of classifiers such as instance classifier part and echo classifier part are designed and carried out serially in the entire system architecture. In the instance classifier part, the pattern classifier identifies between precipitation and non-precipitation data. In the echo classifier part, because precipitation data information identified by the instance classifier could partially involve non-precipitation data information, echo classifier is considered to classify between them. The performance of the proposed classifier is evaluated and analyzed when compared with existing QC method.

사각지역경보시스템을 위한 실시간 측후방 차량검출 알고리즘 (Real-Time Side-Rear Vehicle Detection Algorithm for Blind Spot Warning Systems)

  • 강현우;백장운;한병길;정윤수
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권7호
    • /
    • pp.408-416
    • /
    • 2017
  • 본 논문에서는 주행 중 사각지역내의 차량을 빠르고 정확하게 실시간으로 검출하는 측후방 차량 검출 알고리즘을 제안한다. 제안 알고리즘은 실시간 처리를 위해 MCT(Modified Census Transformation) 특징벡터를 기반으로 에이다부스트 학습을 통해 생성되는 캐스케이드 분류기를 사용한다. MCT 분류기는 검출윈도우가 작을수록 처리속도가 빠르고, 검출윈도우가 클수록 정확도가 증가한다. 제안 알고리즘은 이러한 특징을 이용하여 검출윈도우가 작은 분류기로 차량후보를 빠르게 생성한 후 보다 큰 사이즈의 검출윈도우를 가지는 분류기로 생성된 차량후보에 대해 정확하게 차량인지 검증한다. 또한, 차량분류기와 바퀴분류기를 동시에 사용하여 사각지역내로 진입하는 차량과 사각지역내의 인접차량을 효과적으로 검출한다.