• Title/Summary/Keyword: Classification technique

Search Result 1,716, Processing Time 0.044 seconds

Classification Accuracy Improvement for Decision Tree (의사결정트리의 분류 정확도 향상)

  • Rezene, Mehari Marta;Park, Sanghyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.787-790
    • /
    • 2017
  • Data quality is the main issue in the classification problems; generally, the presence of noisy instances in the training dataset will not lead to robust classification performance. Such instances may cause the generated decision tree to suffer from over-fitting and its accuracy may decrease. Decision trees are useful, efficient, and commonly used for solving various real world classification problems in data mining. In this paper, we introduce a preprocessing technique to improve the classification accuracy rates of the C4.5 decision tree algorithm. In the proposed preprocessing method, we applied the naive Bayes classifier to remove the noisy instances from the training dataset. We applied our proposed method to a real e-commerce sales dataset to test the performance of the proposed algorithm against the existing C4.5 decision tree classifier. As the experimental results, the proposed method improved the classification accuracy by 8.5% and 14.32% using training dataset and 10-fold crossvalidation, respectively.

Terrain Classification for Enhancing Mobility of Outdoor Mobile Robot (실외 주행 로봇의 이동 성능 개선을 위한 지형 분류)

  • Kim, Ja-Young;Lee, Jong-Hwa;Lee, Ji-Hong;Kweon, In-So
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.339-348
    • /
    • 2010
  • One of the requirements for autonomous vehicles on off-road is to move stably in unstructured environments. Such capacity of autonomous vehicles is one of the most important abilities in consideration of mobility. So, many researchers use contact and/or non-contact methods to determine a terrain whether the vehicle can move on or not. In this paper we introduce an algorithm to classify terrains using visual information(one of the non-contacting methods). As a pre-processing, a contrast enhancement technique is introduced to improve classification of terrain. Also, for conducting classification algorithm, training images are grouped according to materials of the surface, and then Bayesian classification are applied to new images to determine membership to each group. In addition to the classification, we can build Traversability map specified by friction coefficients on which autonomous vehicles can decide to go or not. Experiments are made with Load-Cell to determine real friction coefficients of various terrains.

A Study on Face Recognition and Reliability Improvement Using Classification Analysis Technique

  • Kim, Seung-Jae
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.192-197
    • /
    • 2020
  • In this study, we try to find ways to recognize face recognition more stably and to improve the effectiveness and reliability of face recognition. In order to improve the face recognition rate, a lot of data must be used, but that does not necessarily mean that the recognition rate is improved. Another criterion for improving the recognition rate can be seen that the top/bottom of the recognition rate is determined depending on how accurately or precisely the degree of classification of the data to be used is made. There are various methods for classification analysis, but in this study, classification analysis is performed using a support vector machine (SVM). In this study, feature information is extracted using a normalized image with rotation information, and then projected onto the eigenspace to investigate the relationship between the feature values through the classification analysis of SVM. Verification through classification analysis can improve the effectiveness and reliability of various recognition fields such as object recognition as well as face recognition, and will be of great help in improving recognition rates.

Design of Service Matching with Vertical and Horizontal Classification for SOA (SOA에서 서비스 분류 기준에 따른 매칭기법 설계)

  • Choi, Mi-Sook;Lee, Seo-Jeong
    • Journal of Digital Contents Society
    • /
    • v.8 no.2
    • /
    • pp.107-112
    • /
    • 2007
  • With the evolution to distributed computing technology, the concept of conventional client/server function has been advanced to Service-Oriented Architecture, which can share the information between heterogeneous systems as services. To success Service-Oriented Architecture, the conjunction between business layer and application layer is one of the important techniques. In this paper, we classify services into two views, vertical and horizontal, and introduce matching technique with service classification for SOA.

  • PDF

Feature Vector Processing for Speech Emotion Recognition in Noisy Environments (잡음 환경에서의 음성 감정 인식을 위한 특징 벡터 처리)

  • Park, Jeong-Sik;Oh, Yung-Hwan
    • Phonetics and Speech Sciences
    • /
    • v.2 no.1
    • /
    • pp.77-85
    • /
    • 2010
  • This paper proposes an efficient feature vector processing technique to guard the Speech Emotion Recognition (SER) system against a variety of noises. In the proposed approach, emotional feature vectors are extracted from speech processed by comb filtering. Then, these extracts are used in a robust model construction based on feature vector classification. We modify conventional comb filtering by using speech presence probability to minimize drawbacks due to incorrect pitch estimation under background noise conditions. The modified comb filtering can correctly enhance the harmonics, which is an important factor used in SER. Feature vector classification technique categorizes feature vectors into either discriminative vectors or non-discriminative vectors based on a log-likelihood criterion. This method can successfully select the discriminative vectors while preserving correct emotional characteristics. Thus, robust emotion models can be constructed by only using such discriminative vectors. On SER experiment using an emotional speech corpus contaminated by various noises, our approach exhibited superior performance to the baseline system.

  • PDF

Fault Types-Classification and Section Discrimination Algorithm using Neuro-Fuzzy in Combined Transmission Lines (뉴로-퍼지를 이용한 혼합송전선로에서의 고장종류 및 고장구간 판별 알고리즘)

  • Kim, Kyoung-Ho;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.534-536
    • /
    • 2003
  • It is important to classily fault types and discriminate fault section by any detecting technique for combined transmission lines. This paper proposes the technique to classify the fault types and fault section using neuro-fuzzy systems. Neuro-fuzzy systems are composed of two parts to perform different works. First, neuro-fuzzy system for fault type classification is performed with approximation coefficient of currents obtained by wavelet transform. Another neuro-fuzzy system discriminates the fault section between overhead and underground with detail coefficients of voltage and current. In this paper, neuro-fuzzy system shows the excellent results for classification of fault types and discrimination of fault section.

  • PDF

Fault Types-Classification, Section Discrimination and location Algorithm using Neuro-Fuzzy in Combined Transmission Lines (뉴로-퍼지를 이용한 혼합송전선로에서의 고장종류, 고장구간 및 고장점 추정 알고리즘)

  • Kim, Kyoung-Ho;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.412-415
    • /
    • 2003
  • It is important to classily fault types, discriminate fault section and calculate the fault location by any detecting technique for combined transmission lines. This paper proposes the technique to classily the fault types and fault section using neuro-fuzzy systems. Neuro-fuzzy systems are composed of three parts to perform different works. First, neuro-fuzzy system for fault type classification is performed with approximation coefficient of currents obtained by wavelet transform. The second neuro-fuzzy system discriminates the fault section between overhead and underground with detail coefficients of voltage and current. The last neuro-fuzzy system calculates the fault location with impedance in this paper, neuro-furry system shows the excellent results for classification of fault types and discrimination of fault section.

  • PDF

An Investigation of Classification and Management of Emergency Restoration Equipment (응급복구장비의 분류와 운용방안 연구)

  • Kim, Jung-Soo;Yoon, Young-Noh;Kim, Nak-Seok;Yoon, Sei-Eui
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.605-608
    • /
    • 2008
  • Storm and flood damage management systems in national disaster management system(NDMS) were organized into three operation systems. They are prevention, preparation, response, and recovery systems. Disaster resources in each system must be promptly and exactly applied to minimize casualties and loss of properties. However, the disaster resources in current management system can not be immediately used in calamity situation due to the lack of efficiency in statistical data. Therefore, it is necessary to classify the emergency restoration equipment for efficient management and mobilization of disaster resources in disaster situation. In this study, field survey was executed to appropriately classify the emergency restoration equipment. Problems and reformation points of the disaster resources system were also presented to improve the classification technique and to construct the data base.

  • PDF

Study of oversampling algorithms for soil classifications by field velocity resistivity probe

  • Lee, Jong-Sub;Park, Junghee;Kim, Jongchan;Yoon, Hyung-Koo
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.247-258
    • /
    • 2022
  • A field velocity resistivity probe (FVRP) can measure compressional waves, shear waves and electrical resistivity in boreholes. The objective of this study is to perform the soil classification through a machine learning technique through elastic wave velocity and electrical resistivity measured by FVRP. Field and laboratory tests are performed, and the measured values are used as input variables to classify silt sand, sand, silty clay, and clay-sand mixture layers. The accuracy of k-nearest neighbors (KNN), naive Bayes (NB), random forest (RF), and support vector machine (SVM), selected to perform classification and optimize the hyperparameters, is evaluated. The accuracies are calculated as 0.76, 0.91, 0.94, and 0.88 for KNN, NB, RF, and SVM algorithms, respectively. To increase the amount of data at each soil layer, the synthetic minority oversampling technique (SMOTE) and conditional tabular generative adversarial network (CTGAN) are applied to overcome imbalance in the dataset. The CTGAN provides improved accuracy in the KNN, NB, RF and SVM algorithms. The results demonstrate that the measured values by FVRP can classify soil layers through three kinds of data with machine learning algorithms.

A Study on Worker Risk Reduction Methods using the Deep Learning Image Processing Technique in the Turning Process (선삭공정에서 딥러닝 영상처리 기법을 이용한 작업자 위험 감소 방안 연구)

  • Bae, Yong Hwan;Lee, Young Tae;Kim, Ho-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.1-7
    • /
    • 2021
  • The deep learning image processing technique was used to prevent accidents in lathe work caused by worker negligence. During lathe operation, when the chuck is rotated, it is very dangerous if the operator's hand is near the chuck. However, if the chuck is stopped during operation, it is not dangerous for the operator's hand to be in close proximity to the chuck for workpiece measurement, chip removal or tool change. We used YOLO (You Only Look Once), a deep learning image processing program for object detection and classification. Lathe work images such as hand, chuck rotation and chuck stop are used for learning, object detection and classification. As a result of the experiment, object detection and class classification were performed with a success probability of over 80% at a confidence score 0.5. Thus, we conclude that the artificial intelligence deep learning image processing technique can be effective in preventing incidents resulting from worker negligence in future manufacturing systems.