• 제목/요약/키워드: Classification technique

검색결과 1,716건 처리시간 0.036초

터널구간 암반분류를 위한 탄성파 기준속도비의 제안 (A proposal of seismic reference velocity ratio for the rock mass classification in tunnel area)

  • 고광범;하희상;임해룡
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2005년도 제7회 특별심포지움 논문집
    • /
    • pp.37-42
    • /
    • 2005
  • 우리나라 지형 여건 상 도로나 철도의 시공에는 터널이 포함되는 경우가 많다. 이 경우 터널의 미시추 구간에 대한 암반분류 도출에는 물리탐사가 유력한 수단이 된다. 탄성파 속도에 근거한 암반분류는 터널의 계획고가 깊을 경우 지표 및 시추공을 동시에 이용하는 대심도 토모그래피 기법이 적합하나 대심도 토모그래피 결과는 현재 국내에서 적용되고 있는 암반분류 기준으로 하면 통상 실제보다 암질을 양호하게 평가하는 경향이 있다. 본 연구에서는 암반상태와 탄성파 속도와의 상관관계를 보다 합리적으로 결정하기 위한 방법의 일환으로 셈블런스에 근거한 탄성파 기준속도비를 이용하는 암반분류방법을 제안하고 아울러 현장자료를 이용하여 그의 적용성을 고찰하였다.

  • PDF

신경망 기반의 오염부하량 산정을 위한 위성영상 토지피복 분류기법 (Neural Network Based Land Cover Classification Technique of Satellite Image for Pollutant Load Estimation)

  • Park, Sang-Young;Ha, Sung-Ryong
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.1-4
    • /
    • 2001
  • Landsat TM 위성영상을 대상으로 인공신경망 모형과 RBF 신경망 모형의 토지피복분류 정확도를 평가하였다. 토지피복의 특성에 따라 세 개의 연구지역(복합토지이용, 농경지, 도시지역)을 대상으로 RBF 신경망 모형의 입력밴드 조합 및 분류 항목의 변화에 따른 민감도 분석이 수행되었다. 오염부하 원단위의 신뢰구간 및 분포를 추정하기 위하여 붓스트랩기법이 적화하였으며, 특히 토지이용이 다양한 도시지역에서 가장 큰 변화폭을 보였다.

  • PDF

Supervised classification for greenhouse detection by using sharpened SWIR bands of Sentinel-2A satellite imagery

  • Lim, Heechang;Park, Honglyun
    • 한국측량학회지
    • /
    • 제38권5호
    • /
    • pp.435-441
    • /
    • 2020
  • Sentinel-2A satellite imagery provides VNIR (Visible Near InfraRed) and SWIR (ShortWave InfraRed) wavelength bands, and it is known to be effective for land cover classification, cloud detection, and environmental monitoring. Greenhouse is one of the middle classification classes for land cover map provided by the Ministry of Environment of the Republic of Korea. Since greenhouse is a class that has a lot of changes due to natural disasters such as storm and flood damage, there is a limit to updating the greenhouse at a rapid cycle in the land cover map. In the present study, we utilized Sentinel-2A satellite images that provide both VNIR and SWIR bands for the detection of greenhouse. To utilize Sentinel-2A satellite images for the detection of greenhouse, we produced high-resolution SWIR bands applying to the fusion technique performed in two stages and carried out the detection of greenhouse using SVM (Support Vector Machine) supervised classification technique. In order to analyze the applicability of SWIR bands to greenhouse detection, comparative evaluation was performed using the detection results applying only VNIR bands. As a results of quantitative and qualitative evaluation, the result of detection by additionally applying SWIR bands was found to be superior to the result of applying only VNIR bands.

Reducing Spectral Signature Confusion of Optical Sensor-based Land Cover Using SAR-Optical Image Fusion Techniques

  • ;Tateishi, Ryutaro;Wikantika, Ketut;M.A., Mohammed Aslam
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.107-109
    • /
    • 2003
  • Optical sensor-based land cover categories produce spectral signature confusion along with degraded classification accuracy. In the classification tasks, the goal of fusing data from different sensors is to reduce the classification error rate obtained by single source classification. This paper describes the result of land cover/land use classification derived from solely of Landsat TM (TM) and multisensor image fusion between JERS 1 SAR (JERS) and TM data. The best radar data manipulation is fused with TM through various techniques. Classification results are relatively good. The highest Kappa Coefficient is derived from classification using principal component analysis-high pass filtering (PCA+HPF) technique with the Overall Accuracy significantly high.

  • PDF

Comparison of wavelet-based decomposition and empirical mode decomposition of electrohysterogram signals for preterm birth classification

  • Janjarasjitt, Suparerk
    • ETRI Journal
    • /
    • 제44권5호
    • /
    • pp.826-836
    • /
    • 2022
  • Signal decomposition is a computational technique that dissects a signal into its constituent components, providing supplementary information. In this study, the capability of two common signal decomposition techniques, including wavelet-based and empirical mode decomposition, on preterm birth classification was investigated. Ten time-domain features were extracted from the constituent components of electrohysterogram (EHG) signals, including EHG subbands and EHG intrinsic mode functions, and employed for preterm birth classification. Preterm birth classification and anticipation are crucial tasks that can help reduce preterm birth complications. The computational results show that the preterm birth classification obtained using wavelet-based decomposition is superior. This, therefore, implies that EHG subbands decomposed through wavelet-based decomposition provide more applicable information for preterm birth classification. Furthermore, an accuracy of 0.9776 and a specificity of 0.9978, the best performance on preterm birth classification among state-of-the-art signal processing techniques, were obtained using the time-domain features of EHG subbands.

CNN 기법을 활용한 터널 암판정 예측기술 개발 (Rock Classification Prediction in Tunnel Excavation Using CNN)

  • 김하영;조래훈;김규선
    • 한국지반공학회논문집
    • /
    • 제35권9호
    • /
    • pp.37-45
    • /
    • 2019
  • 터널 굴착 시 신속한 막장면 상태 파악 및 적절한 지보패턴 결정은 터널 붕락사고의 예방 및 안정적인 굴진에 매우 중요하다. 본 연구에서는 딥러닝 기법을 활용하여 막장면 상태에 따른 암반상태 분류를 신속하게 결정할 수 있는 기술을 개발하였으며, CNN 기법을 이용한 암반상태 분류방법 및 예측 정확도 개선 방법 등을 제시하고 있다. 수 만개의 이미지가 사전 학습된 VGG16 모델을 알고리즘으로 적용하였고, 1,469개의 터널 막장면 이미지에 대한 학습을 통하여 5개 등급으로 암반상태를 분류하였다. 본 연구에서의 예측 정확도는 최대 83.9% 수준을 나타내었으며, 향후 추가적인 이미지 축적을 통해 암반상태 평가자에 따른 편차를 줄인 객관적이고 정량적 암반상태 분류방법으로 활용 가능할 것으로 판단된다.

빅데이터 분류 기법에 따른 벤처 기업의 성장 단계별 차이 분석 (The Difference Analysis between Maturity Stages of Venture Firms by Classification Techniques of Big Data)

  • 정병호
    • 디지털산업정보학회논문지
    • /
    • 제15권4호
    • /
    • pp.197-212
    • /
    • 2019
  • The purpose of this study is to identify the maturity stages of venture firms through classification analysis, which is widely used as a big data technique. Venture companies should develop a competitive advantage in the market. And the maturity stage of a company can be classified into five stages. I will analyze a difference in the growth stage of venture firms between the survey response and the statistical classification methods. The firm growth level distinguished five stages and was divided into the period of start-up and declines. A classification method of big data uses popularly k-mean cluster analysis, hierarchical cluster analysis, artificial neural network, and decision tree analysis. I used variables that asset increase, capital increase, sales increase, operating profit increase, R&D investment increase, operation period and retirement number. The research results, each big data analysis technique showed a large difference of samples sized in the group. In particular, the decision tree and neural networks' methods were classified as three groups rather than five groups. The groups size of all classification analysis was all different by the big data analysis methods. Furthermore, according to the variables' selection and the sample size may be dissimilar results. Also, each classed group showed a number of competitive differences. The research implication is that an analysts need to interpret statistics through management theory in order to interpret classification of big data results correctly. In addition, the choice of classification analysis should be determined by considering not only management theory but also practical experience. Finally, the growth of venture firms needs to be examined by time-series analysis and closely monitored by individual firms. And, future research will need to include significant variables of the company's maturity stages.

캘린더 패턴 기반의 시간 연관적 분류 기법 (Temporal Associative Classification based on Calendar Patterns)

  • 이헌규;노기용;서성보;류근호
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제32권6호
    • /
    • pp.567-584
    • /
    • 2005
  • 시간 데이타마이닝은 기존 데이타마이닝에 시간 개념을 추가하여 시간 속성을 가진 데이타로부터 이전에 잘 알려지지는 않았지만 묵시적이고 잠재적으로 유용한 시간 지식을 탐사하는 기술이다. 대표적 데이타마이닝 기법인 연관규칙과 분류기법은 실세계의 여러 응용분야에서 사용된다. 그러나 대부분의 데이타가 시간 속성을 포함함에도 불구하고 기존의 기법들은 시간 속성을 고려하지 않고 주로 정적인 데이타에 대한 지식 탐사만이 진행되었다. 그리고 시간 데이타에 대한 데이타마이닝 연구들은 데이타의 발생시점과 시간 제약조건을 추가한 지식 탐사에 중점을 두고 있어 데이타가 포함한 시간 의미나 시간 관계를 탐사하는데 부족하였다. 이 논문에서는 시간 클래스 연관규칙에 기반한 시간 연관적 분류기법을 제안한다. 이 기법은 분류규칙 생성을 위해서 연관적 분류에 시간 차원을 포함하여 확장한 시간 클래스 연관규칙에 의해 탐사된 규칙들을 적용하는 것이다. 그러므로 이 기법은 기존의 분류 기법들에 비해 더 유용한 지식탐사가 가능하다.

폐금속 광산지역 농경지 납, 아연 오염 토양의 중금속 고도선별 (Enhanced Separation Technique of Heavy Metal (Pb, Zn) in Contaminated Agricultural Soils near Abandoned Metal Mine)

  • 박찬오;김진수;서승원;이영재;이재영;박미정;공성호
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권7호
    • /
    • pp.41-53
    • /
    • 2013
  • The study is to propose the optimal separation technique of heavy metals (Pb and Zn) contaminated in soil for improving the removal efficiency by various applicable techniques. The heavy metal contaminated soil samples near abandoned mine X-1 and X-2 were used for the study. Firstly, the wet classification process was shown more than 80% of removal efficiency for lead and zinc. Meanwhile, the magnetic separation process was shown low removal efficiency for lead and zincs because those heavy metals were non-magnetic materials. For the next step, the flotation separation process was shown approximately 24.4% of removal efficiency for zinc, while the gravity concentration process was shown approximately 57% of removal efficiency for lead, and 19.9% of removal efficiency for zinc, respectively. Therefore, zinc contaminated in soil would be effectively treated by the combination technique of the wet classification and the flotation technique. Meanwhile, lead contaminated in soil would be effectively treated by the combination technique of the wet classification process and the flotation process. Furthermore, the extraction of organic matter was shown more effective with aeration, 3% of hydrogen peroxide and 3% of lime such as calcium hydroxide.

Word2Vec를 이용한 토픽모델링의 확장 및 분석사례 (Expansion of Topic Modeling with Word2Vec and Case Analysis)

  • 윤상훈;김근형
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제30권1호
    • /
    • pp.45-64
    • /
    • 2021
  • Purpose The traditional topic modeling technique makes it difficult to distinguish the semantic of topics because the key words assigned to each topic would be also assigned to other topics. This problem could become severe when the number of online reviews are small. In this paper, the extended model of topic modeling technique that can be used for analyzing a small amount of online reviews is proposed. Design/methodology/approach The extended model of being proposed in this paper is a form that combines the traditional topic modeling technique and the Word2Vec technique. The extended model only allocates main words to the extracted topics, but also generates discriminatory words between topics. In particular, Word2vec technique is applied in the process of extracting related words semantically for each discriminatory word. In the extended model, main words and discriminatory words with similar words semantically are used in the process of semantic classification and naming of extracted topics, so that the semantic classification and naming of topics can be more clearly performed. For case study, online reviews related with Udo in Tripadvisor web site were analyzed by applying the traditional topic modeling and the proposed extension model. In the process of semantic classification and naming of the extracted topics, the traditional topic modeling technique and the extended model were compared. Findings Since the extended model is a concept that utilizes additional information in the existing topic modeling information, it can be confirmed that it is more effective than the existing topic modeling in semantic division between topics and the process of assigning topic names.