• Title/Summary/Keyword: Classification method

Search Result 7,229, Processing Time 0.029 seconds

Classification of Underwater Transient Signals Using Gaussian Mixture Model (정규혼합모델을 이용한 수중 천이신호 식별)

  • Oh, Sang-Hwan;Bae, Keun-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.1870-1877
    • /
    • 2012
  • Transient signals generally have short duration and variable length with time-varying and non-stationary characteristics. Thus frame-based pattern matching method is useful for classification of transient signals. In this paper, we propose a new method for classification of underwater transient signals using a Gaussian mixture model(GMM). We carried out classification experiments for various underwater transient signals depending upon the types of noise, signal-to-noise ratio, and number of mixtures in the GMM. Experimental results have verified that the proposed method works quite well for classification of underwater transient signals.

Development of Galaxy Image Classification Based on Hand-crafted Features and Machine Learning (Hand-crafted 특징 및 머신 러닝 기반의 은하 이미지 분류 기법 개발)

  • Oh, Yoonju;Jung, Heechul
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.1
    • /
    • pp.17-27
    • /
    • 2021
  • In this paper, we develop a galaxy image classification method based on hand-crafted features and machine learning techniques. Additionally, we provide an empirical analysis to reveal which combination of the techniques is effective for galaxy image classification. To achieve this, we developed a framework which consists of four modules such as preprocessing, feature extraction, feature post-processing, and classification. Finally, we found that the best technique for galaxy image classification is a method to use a median filter, ORB vector features and a voting classifier based on RBF SVM, random forest and logistic regression. The final method is efficient so we believe that it is applicable to embedded environments.

An Efficient Fingerprint Classification using Gabor Filter (Gabor 필터를 이용한 효율적인 지문분류)

  • Shim, Hyun-Bo;Park, Young-Bae
    • The KIPS Transactions:PartB
    • /
    • v.9B no.1
    • /
    • pp.29-34
    • /
    • 2002
  • Fingerprint recognition technology was studied by classification and matching. In general, there are five different classifications left loop, right loop, whore, arch, and tented-arch. These classifications are used to determine which class an individual's fingerprint belong to, thereby identifying the individual's fingerprint pattern. The result of this classification, which is sent to the large fingerprint database as an index, helps reduce the matching time and enhance the accuracy of fingerprint matching. The existing fingerprint classification method relies on the number and location of cores and delta points called singular points. The drawback of this method is the lack of accuracy stemming from the classification difficulty involving unclear and/or partially-erased fingerprints. The current paper presents an efficient classification method to rectify the problem associated with identifying Singular points from unclear fingerprints. This method, which is based on Gabor filter's unique characteristics for magnifying directional patterns and frequency range selections, improves fingerprint classification accuracy significantly. In this paper, this method is described and its test result is presented for verification.

An Improved Image Classification Using Batch Normalization and CNN (배치 정규화와 CNN을 이용한 개선된 영상분류 방법)

  • Ji, Myunggeun;Chun, Junchul;Kim, Namgi
    • Journal of Internet Computing and Services
    • /
    • v.19 no.3
    • /
    • pp.35-42
    • /
    • 2018
  • Deep learning is known as a method of high accuracy among several methods for image classification. In this paper, we propose a method of enhancing the accuracy of image classification using CNN with a batch normalization method for classification of images using deep CNN (Convolutional Neural Network). In this paper, we propose a method to add a batch normalization layer to existing neural networks to enhance the accuracy of image classification. Batch normalization is a method to calculate and move the average and variance of each batch for reducing the deflection in each layer. In order to prove the superiority of the proposed method, Accuracy and mAP are measured by image classification experiments using five image data sets SHREC13, MNIST, SVHN, CIFAR-10, and CIFAR-100. Experimental results showed that the CNN with batch normalization is better classification accuracy and mAP rather than using the conventional CNN.

A study of Land-Cover Classification technique Using Fuzzy C-Mean Algorithm (Fuzzy C-Mean 알고리즘을 이용한 토지피복분류기법 연구)

  • 신석효;안기원;이주원;김상철
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.267-273
    • /
    • 2004
  • The advantage of the remote sensing is extraction the information of wide area rapidly. Such advantage is the resource and environment are quick and efficient method to grasps accurately method through the land cover classification of wide area. Accordingly this study is used to the high-resolution (6.6m) Electro-Optical Camera (EOC) panchromatic image of the first Korea Multi-Purpose Satellite 1 (KOMPSAT-1) and the multi-spectral Moderate Resolution Imaging Spectroradiometer (MODIS) image data(36 bands).We accomplished FCM classification technique with MLC technique to be general land cover classification method in the content of research. And evaluated the accuracy assessment of two classification method.

  • PDF

Enhancing the Narrow-down Approach to Large-scale Hierarchical Text Classification with Category Path Information

  • Oh, Heung-Seon;Jung, Yuchul
    • Journal of Information Science Theory and Practice
    • /
    • v.5 no.3
    • /
    • pp.31-47
    • /
    • 2017
  • The narrow-down approach, separately composed of search and classification stages, is an effective way of dealing with large-scale hierarchical text classification. Recent approaches introduce methods of incorporating global, local, and path information extracted from web taxonomies in the classification stage. Meanwhile, in the case of utilizing path information, there have been few efforts to address existing limitations and develop more sophisticated methods. In this paper, we propose an expansion method to effectively exploit category path information based on the observation that the existing method is exposed to a term mismatch problem and low discrimination power due to insufficient path information. The key idea of our method is to utilize relevant information not presented on category paths by adding more useful words. We evaluate the effectiveness of our method on state-of-the art narrow-down methods and report the results with in-depth analysis.

A Comparative Study on Classification Methods of Sleep Stages by Using EEG

  • Kim, Jinwoo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.2
    • /
    • pp.113-123
    • /
    • 2014
  • Electrophysiological recordings are considered a reliable method of assessing a person's alertness. Sleep medicine is asked to offer objective methods to measure daytime alertness, tiredness and sleepiness. As EEG signals are non-stationary, the conventional method of frequency analysis is not highly successful in recognition of alertness level. In this paper, EEG signals have been analyzed using wavelet transform as well as discrete wavelet transform and classification using statistical classifiers such as euclidean and mahalanobis distance classifiers and a promising method SVM (Support Vector Machine). As a result of simulation, the average values of accuracies for the Linear Discriminant Analysis (LDA)-Quadratic, k-Nearest Neighbors (k-NN)-Euclidean, and Linear SVM were 48%, 34.2%, and 86%, respectively. The experimental results show that SVM classification method offer the better performance for reliable classification of the EEG signal in comparison with the other classification methods.

Sensibility Classification Algorithm of EEGs using Multi-template Method (다중 템플릿 방법을 이용한 뇌파의 감성 분류 알고리즘)

  • Kim Dong-Jun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.12
    • /
    • pp.834-838
    • /
    • 2004
  • This paper proposes an algorithm for EEG pattern classification using the Multi-template method, which is a kind of speaker adaptation method for speech signal processing. 10-channel EEG signals are collected in various environments. The linear prediction coefficients of the EEGs are extracted as the feature parameter of human sensibility. The human sensibility classification algorithm is developed using neural networks. Using EEGs of comfortable or uncomfortable seats, the proposed algorithm showed about 75% of classification performance in subject-independent test. In the tests using EEG signals according to room temperature and humidity variations, the proposed algorithm showed good performance in tracking of pleasantness changes and the subject-independent tests produced similar performances with subject-dependent ones.

Classification Using Convex Clustering Neural Network (볼록 군집 신경 회로망을 이용한 분류)

  • 김영준;박용진
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.3
    • /
    • pp.114-122
    • /
    • 2000
  • This paper proposes a classification method using an amorphous Prototype to minimize classification error caused by such fixed-Prototype-based methods as Fuzzy C-Means, Nearest Neighborring Classification, FMMCNN, and Fuzzy-ART. For this method, a new fuzzy neural network is introduced, in which a convex polytope is generated or adaptively reshaped to classify the given datum into a proper group. Thus, this method contains a function to classify sequential data set. To show the validity of this method, various numerical experiments including comparison results with FMMCNN are presented

  • PDF

A Novel Posterior Probability Estimation Method for Multi-label Naive Bayes Classification

  • Kim, Hae-Cheon;Lee, Jaesung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.6
    • /
    • pp.1-7
    • /
    • 2018
  • A multi-label classification is to find multiple labels associated with the input pattern. Multi-label classification can be achieved by extending conventional single-label classification. Common extension techniques are known as Binary relevance, Label powerset, and Classifier chains. However, most of the extended multi-label naive bayes classifier has not been able to accurately estimate posterior probabilities because it does not reflect the label dependency. And the remaining extended multi-label naive bayes classifier has a problem that it is unstable to estimate posterior probability according to the label selection order. To estimate posterior probability well, we propose a new posterior probability estimation method that reflects the probability between all labels and labels efficiently. The proposed method reflects the correlation between labels. And we have confirmed through experiments that the extended multi-label naive bayes classifier using the proposed method has higher accuracy then the existing multi-label naive bayes classifiers.