• Title/Summary/Keyword: Classification algorithms

Search Result 1,168, Processing Time 0.029 seconds

Analysis of Classification Accuracy for Multiclass Problems (다중 클래스 분포 문제에 대한 분류 정확도 분석)

  • 최의선;이철희
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.190-193
    • /
    • 2000
  • In this paper, we investigate the distribution of classification accuracies of multiclass problems in the feature space and analyze performances of the conventional feature extraction algorithms. In order to find the distribution of classification accuracies, we sample the feature space and compute the classification accuracy corresponding to each sampling point. Experimental results showed that there exist much better feature sets that the conventional feature extraction algorithms fail to find. In addition, the distribution of classification accuracies is useful for developing and evaluating the feature extraction algorithm.

  • PDF

Performance Comparison of Algorithm through Classification of Parkinson's Disease According to the Speech Feature (음성 특징에 따른 파킨슨병 분류를 위한 알고리즘 성능 비교)

  • Chung, Jae Woo
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.209-214
    • /
    • 2016
  • The purpose of this study was to classify healty persons and Parkinson disease patients from the vocal characteristics of healty persons and the of Parkinson disease patients using Machine Learning algorithms. So, we compared the most widely used algorithms for Machine Learning such as J48 algorithm and REPTree algorithm. In order to evaluate the classification performance of the two algorithms, the results were compared with depending on vocal characteristics. The classification performance of depending on vocal characteristics show 88.72% and 84.62%. The test results showed that the J48 algorithms was superior to REPTree algorithms.

A Comparative Study on Discretization Algorithms for Data Mining (데이터 마이닝을 위한 이산화 알고리즘에 대한 비교 연구)

  • Choi, Byong-Su;Kim, Hyun-Ji;Cha, Woon-Ock
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.1
    • /
    • pp.89-102
    • /
    • 2011
  • The discretization process that converts continuous attributes into discrete ones is a preprocessing step in data mining such as classification. Some classification algorithms can handle only discrete attributes. The purpose of discretization is to obtain discretized data without losing the information for the original data and to obtain a high predictive accuracy when discretized data are used in classification. Many discretization algorithms have been developed. This paper presents the results of our comparative study on recently proposed representative discretization algorithms from the view point of splitting versus merging and supervised versus unsupervised. We implemented R codes for discretization algorithms and made them available for public users.

Study on the Surface Defect Classification of Al 6061 Extruded Material By Using CNN-Based Algorithms (CNN을 이용한 Al 6061 압출재의 표면 결함 분류 연구)

  • Kim, S.B.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.31 no.4
    • /
    • pp.229-239
    • /
    • 2022
  • Convolution Neural Network(CNN) is a class of deep learning algorithms and can be used for image analysis. In particular, it has excellent performance in finding the pattern of images. Therefore, CNN is commonly applied for recognizing, learning and classifying images. In this study, the surface defect classification performance of Al 6061 extruded material using CNN-based algorithms were compared and evaluated. First, the data collection criteria were suggested and a total of 2,024 datasets were prepared. And they were randomly classified into 1,417 learning data and 607 evaluation data. After that, the size and quality of the training data set were improved using data augmentation techniques to increase the performance of deep learning. The CNN-based algorithms used in this study were VGGNet-16, VGGNet-19, ResNet-50 and DenseNet-121. The evaluation of the defect classification performance was made by comparing the accuracy, loss, and learning speed using verification data. The DenseNet-121 algorithm showed better performance than other algorithms with an accuracy of 99.13% and a loss value of 0.037. This was due to the structural characteristics of the DenseNet model, and the information loss was reduced by acquiring information from all previous layers for image identification in this algorithm. Based on the above results, the possibility of machine vision application of CNN-based model for the surface defect classification of Al extruded materials was also discussed.

Classification Algorithms for Human and Dog Movement Based on Micro-Doppler Signals

  • Lee, Jeehyun;Kwon, Jihoon;Bae, Jin-Ho;Lee, Chong Hyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.1
    • /
    • pp.10-17
    • /
    • 2017
  • We propose classification algorithms for human and dog movement. The proposed algorithms use micro-Doppler signals obtained from humans and dogs moving in four different directions. A two-stage classifier based on a support vector machine (SVM) is proposed, which uses a radial-based function (RBF) kernel and $16^{th}$-order linear predictive code (LPC) coefficients as feature vectors. With the proposed algorithms, we obtain the best classification results when a first-level SVM classifies the type of movement, and then, a second-level SVM classifies the moving object. We obtain the correct classification probability 95.54% of the time, on average. Next, to deal with the difficult classification problem of human and dog running, we propose a two-layer convolutional neural network (CNN). The proposed CNN is composed of six ($6{\times}6$) convolution filters at the first and second layers, with ($5{\times}5$) max pooling for the first layer and ($2{\times}2$) max pooling for the second layer. The proposed CNN-based classifier adopts an auto regressive spectrogram as the feature image obtained from the $16^{th}$-order LPC vectors for a specific time duration. The proposed CNN exhibits 100% classification accuracy and outperforms the SVM-based classifier. These results show that the proposed classifiers can be used for human and dog classification systems and also for classification problems using data obtained from an ultra-wideband (UWB) sensor.

Traffic Classification Using Machine Learning Algorithms in Practical Network Monitoring Environments (실제 네트워크 모니터링 환경에서의 ML 알고리즘을 이용한 트래픽 분류)

  • Jung, Kwang-Bon;Choi, Mi-Jung;Kim, Myung-Sup;Won, Young-J.;Hong, James W.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8B
    • /
    • pp.707-718
    • /
    • 2008
  • The methodology of classifying traffics is changing from payload based or port based to machine learning based in order to overcome the dynamic changes of application's characteristics. However, current state of traffic classification using machine learning (ML) algorithms is ongoing under the offline environment. Specifically, most of the current works provide results of traffic classification using cross validation as a test method. Also, they show classification results based on traffic flows. However, these traffic classification results are not useful for practical environments of the network traffic monitoring. This paper compares the classification results using cross validation with those of using split validation as the test method. Also, this paper compares the classification results based on flow to those based on bytes. We classify network traffics by using various feature sets and machine learning algorithms such as J48, REPTree, RBFNetwork, Multilayer perceptron, BayesNet, and NaiveBayes. In this paper, we find the best feature sets and the best ML algorithm for classifying traffics using the split validation.

Membership Function-based Classification Algorithms for Stability improvements of BCI Systems

  • Yeom, Hong-Gi;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.59-64
    • /
    • 2010
  • To improve system performance, we apply the concept of membership function to Variance Considered Machines (VCMs) which is a modified algorithm of Support Vector Machines (SVMs) proposed in our previous studies. Many classification algorithms separate nonlinear data well. However, existing algorithms have ignored the fact that probabilities of error are very high in the data-mixed area. Therefore, we make our algorithm ignore data which has high error probabilities and consider data importantly which has low error probabilities to generate system output according to the probabilities of error. To get membership function, we calculate sigmoid function from the dataset by considering means and variances. After computation, this membership function is applied to the VCMs.

Classifying Social Media Users' Stance: Exploring Diverse Feature Sets Using Machine Learning Algorithms

  • Kashif Ayyub;Muhammad Wasif Nisar;Ehsan Ullah Munir;Muhammad Ramzan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.79-88
    • /
    • 2024
  • The use of the social media has become part of our daily life activities. The social web channels provide the content generation facility to its users who can share their views, opinions and experiences towards certain topics. The researchers are using the social media content for various research areas. Sentiment analysis, one of the most active research areas in last decade, is the process to extract reviews, opinions and sentiments of people. Sentiment analysis is applied in diverse sub-areas such as subjectivity analysis, polarity detection, and emotion detection. Stance classification has emerged as a new and interesting research area as it aims to determine whether the content writer is in favor, against or neutral towards the target topic or issue. Stance classification is significant as it has many research applications like rumor stance classifications, stance classification towards public forums, claim stance classification, neural attention stance classification, online debate stance classification, dialogic properties stance classification etc. This research study explores different feature sets such as lexical, sentiment-specific, dialog-based which have been extracted using the standard datasets in the relevant area. Supervised learning approaches of generative algorithms such as Naïve Bayes and discriminative machine learning algorithms such as Support Vector Machine, Naïve Bayes, Decision Tree and k-Nearest Neighbor have been applied and then ensemble-based algorithms like Random Forest and AdaBoost have been applied. The empirical based results have been evaluated using the standard performance measures of Accuracy, Precision, Recall, and F-measures.

A Comparative Study on Deep Learning Models for Scaffold Defect Detection (인공지지체 불량 검출을 위한 딥러닝 모델 성능 비교에 관한 연구)

  • Lee, Song-Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.109-114
    • /
    • 2021
  • When we inspect scaffold defect using sight, inspecting performance is decrease and inspecting time is increase. We need for automatically scaffold defect detection method to increase detection accuracy and reduce detection times. In this paper. We produced scaffold defect classification models using densenet, alexnet, vggnet algorithms based on CNN. We photographed scaffold using multi dimension camera. We learned scaffold defect classification model using photographed scaffold images. We evaluated the scaffold defect classification accuracy of each models. As result of evaluation, the defect classification performance using densenet algorithm was at 99.1%. The defect classification performance using VGGnet algorithm was at 98.3%. The defect classification performance using Alexnet algorithm was at 96.8%. We were able to quantitatively compare defect classification performance of three type algorithms based on CNN.

Academic Registration Text Classification Using Machine Learning

  • Alhawas, Mohammed S;Almurayziq, Tariq S
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.93-96
    • /
    • 2022
  • Natural language processing (NLP) is utilized to understand a natural text. Text analysis systems use natural language algorithms to find the meaning of large amounts of text. Text classification represents a basic task of NLP with a wide range of applications such as topic labeling, sentiment analysis, spam detection, and intent detection. The algorithm can transform user's unstructured thoughts into more structured data. In this work, a text classifier has been developed that uses academic admission and registration texts as input, analyzes its content, and then automatically assigns relevant tags such as admission, graduate school, and registration. In this work, the well-known algorithms support vector machine SVM and K-nearest neighbor (kNN) algorithms are used to develop the above-mentioned classifier. The obtained results showed that the SVM classifier outperformed the kNN classifier with an overall accuracy of 98.9%. in addition, the mean absolute error of SVM was 0.0064 while it was 0.0098 for kNN classifier. Based on the obtained results, the SVM is used to implement the academic text classification in this work.