• Title/Summary/Keyword: Classification accuracy

Search Result 3,087, Processing Time 0.025 seconds

Selecting Machine Learning Model Based on Natural Language Processing for Shanghanlun Diagnostic System Classification (자연어 처리 기반 『상한론(傷寒論)』 변병진단체계(辨病診斷體系) 분류를 위한 기계학습 모델 선정)

  • Young-Nam Kim
    • 대한상한금궤의학회지
    • /
    • v.14 no.1
    • /
    • pp.41-50
    • /
    • 2022
  • Objective : The purpose of this study is to explore the most suitable machine learning model algorithm for Shanghanlun diagnostic system classification using natural language processing (NLP). Methods : A total of 201 data items were collected from 『Shanghanlun』 and 『Clinical Shanghanlun』, 'Taeyangbyeong-gyeolhyung' and 'Eumyangyeokchahunobokbyeong' were excluded to prevent oversampling or undersampling. Data were pretreated using a twitter Korean tokenizer and trained by logistic regression, ridge regression, lasso regression, naive bayes classifier, decision tree, and random forest algorithms. The accuracy of the models were compared. Results : As a result of machine learning, ridge regression and naive Bayes classifier showed an accuracy of 0.843, logistic regression and random forest showed an accuracy of 0.804, and decision tree showed an accuracy of 0.745, while lasso regression showed an accuracy of 0.608. Conclusions : Ridge regression and naive Bayes classifier are suitable NLP machine learning models for the Shanghanlun diagnostic system classification.

  • PDF

A Rule-based Urban Image Classification System for Time Series Landsat Data

  • Lee, Jin-A;Lee, Sung-Soon;Chi, Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.637-651
    • /
    • 2011
  • This study presents a rule-based urban image classification method for time series analysis of changes in the vicinity of Asan-si and Cheonan-si in Chungcheongnam-do, using Landsat satellite images (1991-2006). The area has been highly developed through the relocation of industrial facilities, land development, construction of a high-speed railroad, and an extension of the subway. To determine the yearly changing pattern of the urban area, eleven classes were made depending on the trend of development. An algorithm was generalized for the rules to be applied as an unsupervised classification, without the need of training area. The analysis results show that the urban zone of the research area has increased by about 1.53 times, and each correlation graph confirmed the distribution of the Built Up Index (BUI) values for each class. To evaluate the rule-based classification, coverage and accuracy were assessed. When Optimal allowable factor=0.36, the coverage of the rule was 98.4%, and for the test using ground data from 1991 to 2006, overall accuracy was 99.49%. It was confirmed that the method suggested to determine the maximum allowable factor correlates to the accuracy test results using ground data. Among the multiple images, available data was used as best as possible and classification accuracy could be improved since optimal classification to suit objectives was possible. The rule-based urban image classification method is expected to be applied to time series image analyses such as thematic mapping for urban development, urban development, and monitoring of environmental changes.

An Analysis of the Landuse Classification Accuracy Using IHS Merged Images from IRS-1C PAN Data and Landsat TM Data (IRS-1C PAN 데이터와 Landsat TM 데이터의 IHS중합화상을 이용한 토지이용분류 정확도 분석)

  • 안기원;이효성;서두천;신석효
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.2
    • /
    • pp.187-194
    • /
    • 1998
  • In this study, effective multispectral Landsat TM band combinations for a merging with the high resolution IRS-1C PAN data using the IHS method to improve landuse accuracy is discussed. From the pre-classified image using the merged images with TM all six band images(with the exception of band 6 image) and PAN image, a sample data which has ten classes was generated. An evaluation of the overall classification accuracy for the representative seven merged images which were merged using each TM three-band images and IRS-1C PAN image by IHS method for the sample area. The increase in classification accuracy is most significant with the inclusion of two of TM4, TM5 and TM7 infrared band images. Especially, the largest increase(11.8 percent) in landuse classification accuracy were investigated when Landsat TM247 bands were merged with IRS-1C PAN data. The classification accuracy when TM three band image and PAN image were used without merging is higher than result of the case of using the merged images.

  • PDF

A Study on the Land Cover Classification and Cross Validation of AI-based Aerial Photograph

  • Lee, Seong-Hyeok;Myeong, Soojeong;Yoon, Donghyeon;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.4
    • /
    • pp.395-409
    • /
    • 2022
  • The purpose of this study is to evaluate the classification performance and applicability when land cover datasets constructed for AI training are cross validation to other areas. For study areas, Gyeongsang-do and Jeolla-do in South Korea were selected as cross validation areas, and training datasets were obtained from AI-Hub. The obtained datasets were applied to the U-Net algorithm, a semantic segmentation algorithm, for each region, and the accuracy was evaluated by applying them to the same and other test areas. There was a difference of about 13-15% in overall classification accuracy between the same and other areas. For rice field, fields and buildings, higher accuracy was shown in the Jeolla-do test areas. For roads, higher accuracy was shown in the Gyeongsang-do test areas. In terms of the difference in accuracy by weight, the result of applying the weights of Gyeongsang-do showed high accuracy for forests, while that of applying the weights of Jeolla-do showed high accuracy for dry fields. The result of land cover classification, it was found that there is a difference in classification performance of existing datasets depending on area. When constructing land cover map for AI training, it is expected that higher quality datasets can be constructed by reflecting the characteristics of various areas. This study is highly scalable from two perspectives. First, it is to apply satellite images to AI study and to the field of land cover. Second, it is expanded based on satellite images and it is possible to use a large scale area and difficult to access.

Optimal Criterion of Classification Accuracy Measures for Normal Mixture (정규혼합에서 분류정확도 측도들의 최적기준)

  • Yoo, Hyun-Sang;Hong, Chong-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.3
    • /
    • pp.343-355
    • /
    • 2011
  • For a data with the assumption of the mixture distribution, it is important to find an appropriate threshold and evaluate its performance. The relationship is found of well-known nine classification accuracy measures such as MVD, Youden's index, the closest-to-(0, 1) criterion, the amended closest-to-(0, 1) criterion, SSS, symmetry point, accuracy area, TA, TR. Then some conditions of these measures are categorized into seven groups. Under the normal mixture assumption, we calculate thresholds based on these measures and obtain the corresponding type I and II errors. We could explore that which classification measure has minimum type I and II errors for estimated mixture distribution to understand the strength and weakness of these classification measures.

Design and Evaluation of ANFIS-based Classification Model (ANFIS 기반 분류모형의 설계 및 성능평가)

  • Song, Hee-Seok;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.3
    • /
    • pp.151-165
    • /
    • 2009
  • Fuzzy neural network is an integrated model of artificial neural network and fuzzy system and it has been successfully applied in control and forecasting area. Recently ANFIS(Adaptive Network-based Fuzzy Inference System) has been noticed widely among various fuzzy neural network models because of its outstanding accuracy of control and forecasting area. We design a new classification model based on ANFIS and evaluate it in terms of classification accuracy. We identified ANFIS-based classification model has higher classification accuracy compared to existing classification model, C5.0 decision tree model by comparing their experimental results.

  • PDF

Land Use Classification of TM Imagery in Hilly Areas: Integration of Image Processing and Expert Knowledge

  • Ding, Feng;Chen, Wenhui;Zheng, Daxian
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1329-1331
    • /
    • 2003
  • Improvement of the classification accuracy is one of the major concerns in the field of remote sensing application research in recent years. Previous research shows that the accuracy of the conventional classification methods based only on the original spectral information were usually unsatisfied and need to be refined by manual edit. This present paper describes a method of combining the image processing, ancillary data (such as digital elevation model) and expert knowledge (especially the knowledge of local professionals) to improve the efficiency and accuracy of the satellite image classification in hilly land. Firstly, the Landsat TM data were geo-referenced. Secondly, the individual bands of the image were intensitynormalized and the normalized difference vegetation index (NDVI) image was also generated. Thirdly, a set of sample pixels (collected from field survey) were utilized to discover their corresponding DN (digital number) ranges in the NDVI image, and to explore the relationships between land use type and its corresponding spectral features . Then, using the knowledge discovered from previous steps as well as knowledge from local professionals, with the support of GIS technology and the ancillary data, a set of conditional statements were applied to perform the TM imagery classification. The results showed that the integration of image processing and spatial analysis functions in GIS improved the overall classification result if compared with the conventional methods.

  • PDF

Feature Selection and Hyper-Parameter Tuning for Optimizing Decision Tree Algorithm on Heart Disease Classification

  • Tsehay Admassu Assegie;Sushma S.J;Bhavya B.G;Padmashree S
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.150-154
    • /
    • 2024
  • In recent years, there are extensive researches on the applications of machine learning to the automation and decision support for medical experts during disease detection. However, the performance of machine learning still needs improvement so that machine learning model produces result that is more accurate and reliable for disease detection. Selecting the hyper-parameter that could produce the possible maximum classification accuracy on medical dataset is the most challenging task in developing decision support systems with machine learning algorithms for medical dataset classification. Moreover, selecting the features that best characterizes a disease is another challenge in developing machine-learning model with better classification accuracy. In this study, we have proposed an optimized decision tree model for heart disease classification by using heart disease dataset collected from kaggle data repository. The proposed model is evaluated and experimental test reveals that the performance of decision tree improves when an optimal number of features are used for training. Overall, the accuracy of the proposed decision tree model is 98.2% for heart disease classification.

A Comparative Study on Deep Learning Models for Scaffold Defect Detection (인공지지체 불량 검출을 위한 딥러닝 모델 성능 비교에 관한 연구)

  • Lee, Song-Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.109-114
    • /
    • 2021
  • When we inspect scaffold defect using sight, inspecting performance is decrease and inspecting time is increase. We need for automatically scaffold defect detection method to increase detection accuracy and reduce detection times. In this paper. We produced scaffold defect classification models using densenet, alexnet, vggnet algorithms based on CNN. We photographed scaffold using multi dimension camera. We learned scaffold defect classification model using photographed scaffold images. We evaluated the scaffold defect classification accuracy of each models. As result of evaluation, the defect classification performance using densenet algorithm was at 99.1%. The defect classification performance using VGGnet algorithm was at 98.3%. The defect classification performance using Alexnet algorithm was at 96.8%. We were able to quantitatively compare defect classification performance of three type algorithms based on CNN.

A Study on the Attributes Classification of Agricultural Land Based on Deep Learning Comparison of Accuracy between TIF Image and ECW Image (딥러닝 기반 농경지 속성분류를 위한 TIF 이미지와 ECW 이미지 간 정확도 비교 연구)

  • Kim, Ji Young;Wee, Seong Seung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.15-22
    • /
    • 2023
  • In this study, We conduct a comparative study of deep learning-based classification of agricultural field attributes using Tagged Image File (TIF) and Enhanced Compression Wavelet (ECW) images. The goal is to interpret and classify the attributes of agricultural fields by analyzing the differences between these two image formats. "FarmMap," initiated by the Ministry of Agriculture, Food and Rural Affairs in 2014, serves as the first digital map of agricultural land in South Korea. It comprises attributes such as paddy, field, orchard, agricultural facility and ginseng cultivation areas. For the purpose of comparing deep learning-based agricultural attribute classification, we consider the location and class information of objects, as well as the attribute information of FarmMap. We utilize the ResNet-50 instance segmentation model, which is suitable for this task, to conduct simulated experiments. The comparison of agricultural attribute classification between the two images is measured in terms of accuracy. The experimental results indicate that the accuracy of TIF images is 90.44%, while that of ECW images is 91.72%. The ECW image model demonstrates approximately 1.28% higher accuracy. However, statistical validation, specifically Wilcoxon rank-sum tests, did not reveal a significant difference in accuracy between the two images.