• 제목/요약/키워드: Classification Prediction

검색결과 1,126건 처리시간 0.033초

슈퍼스칼라 프로세서에서 동적 분류 능력을 갖는 혼합형 데이타 값 예측기의 설계 (Design of a Hybrid Data Value Predictor with Dynamic Classification Capability in Superscalar Processors)

  • 박희룡;이상정
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제27권8호
    • /
    • pp.741-751
    • /
    • 2000
  • 슈퍼스칼라 프로세서에서 명령어 수준 병렬성(Instruction Level Parallelism)을 적극적으로 활용하기 위해서는 명령들 사이에 존재하는 제어 종속관계 및 데이타 종속관계를 극복하는 것이 필수적이다. 데이타 값 예측은 하나의 명령 결과가 생성되기 전에 미리 결과 값을 예측하고 이 예측된 결과를 사용하여 데이타 종속관계가 있는 명령들을 투기적으로 실행(speculative execution)하는 기법이다. 본 논문에서는 동적 분류 능력을 갖는 혼합형 데이타 값 예측기를 제안한다. 제안된 예측기는 최근 값 예측기, 스트라이드 예측기 및 2 단계 예측기를 결합한 혼합형으로 구성되며, 예측되는 명령은 하드웨어에 의한 동적 분류에 의해 각 예측기로 할당된다. 각 명령들의 특성에 따라 각 예측기로 실행 시에 동적 분류됨으로써 각 예측기는 기존의 혼합형 방식보다도 더욱 효과적으로 활용될 수 있다. 제안된 방식의 타당성 검증을 위해 실행구동방식(execution-driven) 시뮬레이터를 사용하여 SPECint95 벤치마크를 시뮬레이션하여 비교한다. 실험 결과 Instruction Per Cycle 비교실험에서 2 단계 예측기 보다 0.36, 혼합형 예측기 보다 0.0l8의 성능을 보였고, 제안된 방식이 기존의 혼합형 방식보다 예측 정확도가 평균 16%가 향상되었고, 하드웨어 비용을 측정한 결과 45%의 감소효과를 얻었다.

  • PDF

실시간 범죄 예측을 위한 랜덤포레스트 알고리즘 기반의 범죄 유형 분류모델 및 모니터링 인터페이스 디자인 요소 제안 (Classification Model of Types of Crime based on Random-Forest Algorithms and Monitoring Interface Design Factors for Real-time Crime Prediction)

  • 박준영;채명수;정성관
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권9호
    • /
    • pp.455-460
    • /
    • 2016
  • 최근 강도, 성폭력과 같은 중범죄들의 수위가 높아짐에 따라 범죄 예측 및 예방에 대한 중요성이 강조되고 있다. 정확한 범죄예측을 위해서는 과거 범죄기록 데이터를 기반으로 정확도 높은 범죄분류모델을 만드는 작업이 필요하며, 신속한 범죄 대응을 위한 시스템 인터페이스가 요구된다. 그러나 기존의 범죄 요소 분석 연구는 데이터 전처리에 대한 난해함으로 인해 정확도 측면에서 한계를 보이며, 범죄 모니터링 시스템은 방대한 양의 범죄 사건기록 분석 결과를 단순 제공함으로써 사용자에게 효과적인 모니터링 기능을 제공하지 못하고 있다. 따라서 본 연구는 실시간 범죄 예측을 위한 랜덤 포레스트 알고리즘 기반의 범죄 유형 분류모델 및 시스템 인터페이스 디자인 요소를 제안한다. 실험을 통해 본 연구는 제안하는 모델이 단순히 범죄기록 데이터만으로 범죄유형을 분류하는 모델 보다 우수함을 입증하였고, 기존의 범죄 모니터링 시스템 분석을 통해 실시간 범죄 모니터링을 위한 시스템 인터페이스를 설계 및 구현하였다.

Classification of Genes Based on Age-Related Differential Expression in Breast Cancer

  • Lee, Gunhee;Lee, Minho
    • Genomics & Informatics
    • /
    • 제15권4호
    • /
    • pp.156-161
    • /
    • 2017
  • Transcriptome analysis has been widely used to make biomarker panels to diagnose cancers. In breast cancer, the age of the patient has been known to be associated with clinical features. As clinical transcriptome data have accumulated significantly, we classified all human genes based on age-specific differential expression between normal and breast cancer cells using public data. We retrieved the values for gene expression levels in breast cancer and matched normal cells from The Cancer Genome Atlas. We divided genes into two classes by paired t test without considering age in the first classification. We carried out a secondary classification of genes for each class into eight groups, based on the patterns of the p-values, which were calculated for each of the three age groups we defined. Through this two-step classification, gene expression was eventually grouped into 16 classes. We showed that this classification method could be applied to establish a more accurate prediction model to diagnose breast cancer by comparing the performance of prediction models with different combinations of genes. We expect that our scheme of classification could be used for other types of cancer data.

전력 부하 패턴 자동 예측을 위한 분류 기법 (Classification Methods for Automated Prediction of Power Load Patterns)

  • ;박진형;이헌규;류근호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2008년도 한국컴퓨터종합학술대회논문집 Vol.35 No.1 (C)
    • /
    • pp.26-30
    • /
    • 2008
  • Currently an automated methodology based on data mining techniques is presented for the prediction of customer load patterns in long duration load profiles. The proposed our approach consists of three stages: (i) data pre-processing: noise or outlier is removed and the continuous attribute-valued features are transformed to discrete values, (ii) cluster analysis: k-means clustering is used to create load pattern classes and the representative load profiles for each class and (iii) classification: we evaluated several supervised learning methods in order to select a suitable prediction method. According to the proposed methodology, power load measured from AMR (automatic meter reading) system, as well as customer indexes, were used as inputs for clustering. The output of clustering was the classification of representative load profiles (or classes). In order to evaluate the result of forecasting load patterns, the several classification methods were applied on a set of high voltage customers of the Korea power system and derived class labels from clustering and other features are used as input to produce classifiers. Lastly, the result of our experiments was presented.

  • PDF

슈퍼스칼라 프로세서에서 예상 테이블의 모험적 갱신과 명령어 실행 유형의 정적 분류를 이용한 혼합형 결과값 예측기 (A Hybrid Value Predictor using Speculative Update of the Predictor Table and Static Classification for the Pattern of Executed Instructions in Superscalar Processors)

  • 박홍준;조영일
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제8권1호
    • /
    • pp.107-115
    • /
    • 2002
  • 데이타 종속성을 제거하기 위해서 명령어의 결과값을 예상하는 여러 결과값 예측기의 장점을 이용하여 높은 성능을 얻을 수 있는 새로운 혼합형 예측 메커니즘을 제안한다. 제안된 혼합형 결과값 예측기는 예상 테이블을 모험적으로 갱신할 수 있기 때문에 부적절한(stale) 데이타로 인해 잘못 예상되는 명령어의 수를 효과적으로 감소시킨다. 또한 정적 분류 정보를 사용하여 명령의 반입시 적절한 예측기에 할당함으로써 예상 정확도를 더욱 향상시키며, 하드웨어 비용을 효율적으로 감소시키도록 하였다. 5개의 SPECint 95 벤치마크 프로그램에 대해 SimpleScalar/PISA 3.0 툴셋을 사용하여 실험하였다. 16-이슈 폭에서 모험적 갱신을 사용한 평균 예상 정확도는 73%의 실험 결과가 나왔으며, 정적 분류 정보를 사용하였을 경우 예상 정확도가 88%로 증가된 결과를 얻었다.

PM10 예측 성능 향상을 위한 농도별 예측 모델 설계 (Prediction Model Design by Concentration Type for Improving PM10 Prediction Performance)

  • 조경우;정용진;오창헌
    • 한국항행학회논문지
    • /
    • 제25권6호
    • /
    • pp.576-581
    • /
    • 2021
  • 고농도의 경우 저농도와 비교하였을 때, 발생 빈도수의 차이와 발생 환경에 대한 차이로 예측 성능의 한계를 두드러지게 보이고 있다. 이러한 문제를 해결하기 위해 본 논문에서는 인공신경망 알고리즘을 이용하여 저농도와 고농도로 분류하고 구분된 농도별로 특성을 학습시킨 두 가지 예측 모델을 통해 예측을 수행하는 모델을 제안하였다. 저농도와 고농도를 분류하기 위해 DNN 기반의 분류 모델을 설계하고 분류모델을 통해 구분된 저농도와 고농도를 기준으로 농도별 특성을 반영하기 위한 저농도 예측 모델과 고농도 예측 모델을 설계하였다. 농도별 예측 모델의 성능 평가 결과, 저농도 예측 정확도가 90.38%, 고농도 예측 정확도는 96.37% 의 예측 정확도를 보였다.

합성곱 신경망 기반 선체 표면 압력 분포의 픽셀 수준 예측 (Pixel level prediction of dynamic pressure distribution on hull surface based on convolutional neural network)

  • 김다연;서정범;이인원
    • 한국가시화정보학회지
    • /
    • 제20권2호
    • /
    • pp.78-85
    • /
    • 2022
  • In these days, the rapid development in prediction technology using artificial intelligent is being applied in a variety of engineering fields. Especially, dimensionality reduction technologies such as autoencoder and convolutional neural network have enabled the classification and regression of high-dimensional data. In particular, pixel level prediction technology enables semantic segmentation (fine-grained classification), or physical value prediction for each pixel such as depth or surface normal estimation. In this study, the pressure distribution of the ship's surface was estimated at the pixel level based on the artificial neural network. First, a potential flow analysis was performed on the hull form data generated by transforming the baseline hull form data to construct 429 datasets for learning. Thereafter, a neural network with a U-shape structure was configured to learn the pressure value at the node position of the pretreated hull form. As a result, for the hull form included in training set, it was confirmed that the neural network can make a good prediction for pressure distribution. But in case of container ship, which is not included and have different characteristics, the network couldn't give a reasonable result.

AN ANOMALY DETECTION METHOD BY ASSOCIATIVE CLASSIFICATION

  • Lee, Bum-Ju;Lee, Heon-Gyu;Ryu, Keun-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.301-304
    • /
    • 2005
  • For detecting an intrusion based on the anomaly of a user's activities, previous works are concentrated on statistical techniques or frequent episode mining in order to analyze an audit data. But, since they mainly analyze the average behaviour of user's activities, some anomalies can be detected inaccurately. Therefore, we propose an anomaly detection method that utilizes an associative classification for modelling intrusion detection. Finally, we proof that a prediction model built from associative classification method yields better accuracy than a prediction model built from a traditional methods by experimental results.

  • PDF

A Case Study on Network Status Classification based on Latency Stability

  • Kim, JunSeong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권11호
    • /
    • pp.4016-4027
    • /
    • 2014
  • Understanding network latency is important for providing consistent and acceptable levels of services in network-based applications. However, due to the difficulty of estimating applications' network demands and the difficulty of network latency modeling the management of network resources has often been ignored. We expect that, since network latency repeats cycles of congested states, a systematic classification method for network status would be helpful to simplify issues in network resource managements. This paper presents a simple empirical method to classify network status with a real operational network. By observing oscillating behavior of end-to-end latency we determine networks' status in run time. Five typical network statuses are defined based on a long-term stability and a short-term burstiness. By investigating prediction accuracies of several simple numerical models we show the effectiveness of the network status classification. Experimental results show that around 80% reduction in prediction errors depending on network status.

난수발생기와 일반화된 회귀 신경망을 이용한 DNA 서열 분류 (DNA Sequence Classification Using a Generalized Regression Neural Network and Random Generator)

  • 김성모;김근호;김병환
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권7호
    • /
    • pp.525-530
    • /
    • 2004
  • A classifier was constructed by using a generalized regression neural network (GRU) and random generator (RG), which was applied to classify DNA sequences. Three data sets evaluated are eukaryotic and prokaryotic sequences (Data-I), eukaryotic sequences (Data-II), and prokaryotic sequences (Data-III). For each data set, the classifier performance was examined in terms of the total classification sensitivity (TCS), individual classification sensitivity (ICS), total prediction accuracy (TPA), and individual prediction accuracy (IPA). For a given spread, the RG played a role of generating a number of sets of spreads for gaussian functions in the pattern layer Compared to the GRNN, the RG-GRNN significantly improved the TCS by more than 50%, 60%, and 40% for Data-I, Data-II, and Data-III, respectively. The RG-GRNN also demonstrated improved TPA for all data types. In conclusion, the proposed RG-GRNN can effectively be used to classify a large, multivariable promoter sequences.