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Abstract 
 

Understanding network latency is important for providing consistent and acceptable 
levels of services in network-based applications. However, due to the difficulty of estimating 
applications' network demands and the difficulty of network latency modeling the 
management of network resources has often been ignored. We expect that, since network 
latency repeats cycles of congested states, a systematic classification method for network 
status would be helpful to simplify issues in network resource managements. This paper 
presents a simple empirical method to classify network status with a real operational network. 
By observing oscillating behavior of end-to-end latency we determine networks’ status in run 
time. Five typical network statuses are defined based on a long-term stability and a short-term 
burstiness. By investigating prediction accuracies of several simple numerical models we 
show the effectiveness of the network status classification. Experimental results show that 
around 80% reduction in prediction errors depending on network status. 
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1. Introduction 

Latency and throughput are the essential factors in network performance. Recently latency is 
getting more attention than peak data rates in many network-based applications. For example, 
in networked control systems(NCS), which remotely control tasks through networks, 
variations in network latency result in delayed command order [1][2]. It can lead to instability 
as well as performance degradations. In online gaming applications, where game consoles and 
server continuously exchange messages for operations, high latencies freeze the entire game 
[3][4]. Users cannot react quickly enough or ultimately lose the game. In high performance 
computing such as cloud or grid computing, where computing platforms are established 
through networks, ignoring network latencies lead to flawed solutions [5][6]. The results can 
become useless especially when the application is time critical. Network latency is of great 
interest in many applications and understanding the behavior of latency is important to provide 
consistent and acceptable levels of services. 

There have been many research efforts to increase our understanding of the behavior of 
network latency. Queueing theory is used with a small scale network having the static 
information on individual links involved [7][8]. System identification and time series 
approaches build mathematical models of network latency oscillations using experimental 
data [7][9]. Artificial neural networks approximate the dynamics of network latency with its 
strong adaptive learning ability [9][10]. While much of these works have focused on modeling 
of network latency, network resources in actual network-based applications have not been 
actively managed. For example, in NCS areas unrealistic or over-simplified assumptions on 
network delay such as constant delay, stochastic delay, Markov chain model are frequently 
used [1][2]. In grid computing environments, the effective scheduling has been focused on 
controllable shared resources such as processors, memory, bandwidth but managements of 
network latency have easily been ignored [5][11][12]. This is because networks consist of 
multiple administrative domains. The complexity and the heterogeneity in numerous factors 
including congestion, QoS, and routing protocols make it very difficult to derive an accurate 
modeling of network latency. However, proper managements of network latency are important 
to optimize applications’ performance and resource utilization. A divide-and-conquer 
approach, in which large complex problems are decomposed into smaller, more tractable 
subproblems, would be an efficient solution. Network traffic repeat cycles of 
congested-empty-congested indefinitely and a systematic method to differentiate between a 
congested state and an empty state would be helpful to simplify issues in many network-based 
applications. 

This paper presents an empirical method to classify network status at the application level. 
We treat the network, seen by specific source and destination nodes, as a black-box and 
directly measure end-to-end latencies in real operational networks. Based on the oscillating 
behavior of network latency both in a long-term and a short-term aspect we define five typical 
network statuses. Experimental results show that the differences in prediction accuracy across 
the network statuses are orders of magnitude. The classification of network status provides a 
simplified intuition of the stability and the burstiness of network latency. We do not expect 
that networks can be regulated by a single rule for all network status. Instead, a delicate 
management of network resources can be provided by combining multiple rules based on 
network status. The proposed classification method is simple to utilize and allows scheduling, 
modeling, or planning network resources to be pursued more accurately according to network 
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status.  
The rest of the paper is organized as follows. In section 2, a preliminary study on several 

numerical models with the performance metric of mean square error(MSE) is provided. In 
section 3, a simple and practical approach to classify network status is presented in detail. In 
section 4, we evaluate the effectiveness of the proposed method for sets of real network 
latency data. Finally, in section 5, we summarize our results and conclude. 

2. A Preliminary Study 

2.1 Network Latency Characterizations  
As in many studies on latency dynamics, we use RTTs in this experiment. We collect 

network latency using the ping tool, which measures network round trip time(RTT) by sending 
ICMP(Internet Control Message Protocol) echo request and receiving echo reply messages. A 
path between nodes within the Chung-Ang University (Seoul, Korea) campus is continuously 
observed for a day (Thursday, September 24, 2009). The round trip time of a 64-byte probing 
packet is measured in every 10 seconds and Fig. 1 shows the 24-hour RTT sample. Since the 
source, the destination and the size of packets are all fixed variations in latency results mainly 
from the queuing delay due to packet spacing at each hop on the transmission. 

 

Fig. 1. The round trip time to send a 64-byte probing packet is measured for a day. 
 
To characterize network latency several simple numerical models are considered using a 

sliding window mechanism. We denote a window record that consists of the most recent K 
latency history SwinK. In our previous work, we found that the average-, the median-, and the 
minimum-based models show good prediction accuracy in general [14]. 
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min𝐾(𝑡) = SortWin𝐾(0, 𝑡)       (3) 

t_avg𝐾(𝑡) = 1
𝐾−2𝑇

∑ SortWin𝐾(𝑖, 𝑡)𝐾−𝑇−1
𝑖=𝑇         (4) 

t_min𝐾(𝑡) = SortWin𝐾(𝑇, 𝑡)       (5) 

 
where SwinK(i,t) is the (i+1)th element, which is measured at time (t-K+i), of SwinK; SortWinK 
is the sorted sequence of SwinK in increasing order such that SortWinK(0,t) is the smallest 
element and SortWinK(K-1,t) is the largest element in SwinK; T is the fraction of elements in a 
window that are ignored for a trimmed list. We consider a trimmed version of SwinK since 
network latency is naturally bursty. 

2.2 Prediction Accuracy and Window sizes 
We use a trace-driven simulation approach. The record of the 24-hour RTT data is fed 

into a prediction model. By comparing the actual latency value at time t with the simple 
numerical models of a window SwinK, we evaluate the prediction accuracy. It is effective 
because the RTT values are the only concern in this study and because the statistical 
independence of network latencies cannot be guaranteed. We use the performance metric of 
the mean square error(MSE) [9]. For each simple numerical model f, we have 

 
MSE𝑓(𝑡) = 1

𝑡
∑ (rtt(𝑖) − prediction𝑓(𝑖))2𝑡−1
𝑖=0       (6) 

 

 
Fig. 2. The prediction accuracy of the simple numerical models for various window sizes, K. 
 
Fig. 2 shows the prediction accuracy of the simple numerical models when applied over 

the 24-hour RTT sample with various window sizes. In this experiment, we set T = 1 such that 
only the largest and the smallest elements of SwinK can be ignored. From the graph we can say 
that the window size of K = 3, which corresponds to 30 seconds measurement period in the 
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RTT sample, is not enough to reflect the history of network status since the prediction 
accuracy of K = 3 is, in general, worse than that of larger K. The average-based models prefer 
long latency history since they show that the larger K the better prediction accuracy in the 
experimental range. The minimum-based models, however, show that the more latency history 
the worse prediction accuracy. In contrast, the median-based model seems to have an optimal 
window size of K=12. 

3. A Classification of Network Status  
In this section, we present an empirical method to classify network status. First, we divide 

RTT values into two groups: the majority and the outlier. Next, we count the number of 
outliers among the K latency history using a window, SwinK. Based on the number of outliers 
both in long-term and short-term aspects we determine the status of a network on the fly. This 
is a simple and easy-to-utilize approach. 

3.1 Distribution of Network Latency and Outliers 
Fig. 3 shows the latency distribution of the 24-hour RTT sample. The X-axis represents 

the RTT range in usec. The primary and the secondary Y-axis represent their occurrences in 
count and their accumulated occurrences in percentage, respectively. Note that the scale of the 
X-axis is neither linear nor uniform. 

 
Fig. 3. The distribution of latency values for the 24-hour RTT sample. 

 
From the graph we can see that the RTT values are widely distributed between 215 usec 

and 13,653 usec. However, most of the RTT values are clustered over a single narrow range. In 
this case, the RTT values between 215 usec and 300 usec account for about 90% of all. They 
seem to represent normal operations. That is, their network latencies include the most 
deterministic behavior of the queuing delay at each hop on the transmission. We classify these 
RTT values as the majority group. The density function of the majority group shows a 
bell-shaped curve that is symmetric about the median. The rest of the RTT values are 
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distributed over a very wide range but are few in number. They seem to represent bursty traffic 
in abnormal operations. These include congestions, retransmissions, ARP table aging, etc. We 
may further divide them into groups but their portion is so small. We classify these RTT values 
as the outlier group. The network latency of the outlier group seems to be non-deterministic. 

3.2 Five Typical Network Statuses 
It has been known that networks repeat the cycle of being congested-empty-congested 

indefinitely [8][13]. In fact, when we carefully look into the preliminary study results we can 
find that there are certain patterns in network latency variations. For example, at one time, 
network remains stable and becomes very predictable. At another time, network tends to be 
very bursty and makes good prediction difficult. We define five typical network statuses based 
on a long-term stability and a short-term burstiness of latency history. By counting the number 
of outliers among the K latency history of a window SwinK we determine the status of a 
network. 

 
 Strongly Stable(SS) status: Network tends to be very stable with respect to a long-term 

aspect. This is the case when there is no outlier in a long-term window SwinLT. Network 
latency is highly predictable in this status. 

 Relatively Stable(RS) status: Network shows only occasional bursts of traffic such that it 
is stable when we ignore the sporadic bursts with respect to a long-term aspect. This is 
the case when there are one or two outliers in a long-term window SwinLT. It can be 
considered as either a prelude or a postlude of the SS status.  

 Highly Bursty(HB) status: Network tends to be very bursty with respect to a short-term 
aspect. This is the case when there are more than one half outliers in a short-term window 
SwinST. It is pointless to predict network latency in this status.  

 Relatively Bursty(RB) status: Network shows stable and bursty patterns repeatedly. 
Network seems to be stable with respect to a short-term aspect but not with respect to a 
long-term aspect.  

 Transient(T) status: All other cases. It relays between the stable statuses of the SS, the 
RS and the busrty statuses of the HB, the RB.  
 
In this experimental study, we consider the window sizes used in the preliminary study of 

section 2: Swin30, Swin24, Swin18, Swin12, Swin6 and Swin3. We exclude the window size of K 
= 3 since we aware that it is too small to reflect the history of network status. The largest one, 
the window size of K = 30, which corresponds to 5 minutes measurement period in the RTT 
sample, is used to determine network’s long-term stability. We expect that larger windows can 
give only a limited benefit since the preliminary study results seem to be getting saturated. The 
smallest one other than K = 3, the window size of K = 6, which corresponds to 1 minute 
measurement period in the RTT sample, is used to determine network’s short-term burstiness. 
The window sizes of K = 12, 18, 24, which corresponds to 2, 3, 4 minutes measurement period, 
respectively, are used in between. In order to consider both long-term and short-term aspects, 
we use those multiple window sizes at the same time. The latency history of the various K can 
be given by a single window Swin30, which is a superset of Swin24, Swin18, Swin12, and Swin6 
as well. 
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Fig. 4. The state transition diagram of the five typical network statuses. State transitions are induced by 

counting the number of outliers within a window SwinK. 
 
Fig. 4 shows the state transition diagram of the five typical network statuses. The labels 

on the transition arc of n/K represent the number of outliers, n, among the K latency history of 
SwinK. From the definition of the five typical network statuses with the windows in various 
sizes of Swin30, Swin24, Swin18, Swin12, Swin6 we complete the state transition diagram. Note 
that the condition to enter a status differs from the condition to exit the status reflecting the 
inertial nature of network statuses. 

 
 T  SS (n/K = 0/30): from the definition of the SS with the long-term window Swin30 
 T  RS (n/K = 1~2/30): from the definition of the RS with the long-term window 

Swin30  
 T, RB  HB (n/K = 4~6/6): from the definition of the HB with the short-term window 

Swin6 
 T  RB (n/K = 4~12/12): from the definition of the RB with the window Swin12 

(heuristically larger than the short-term window size – in this experiment, we use 
Swin12 among Swin30, Swin24, Swin18, Swin12, Swin6)  

 RS  SS (n/K = 0/24): from the definition of the SS and the RS with the window 
Swin24 (heuristically smaller than the long-term window size – in this experiment, we 
use Swin24 among Swin30, Swin24, Swin18, Swin12, Swin6) considering the inertial 
nature of network statuses  

 SS  RS (n/K = 2nd outlier), RS  T (n/K = outlier): from the definition of the SS and 
the RS considering the inertial nature of network statuses  

 HB  RB (n/K = 0/6): from the definition of the HB and the RB with the short-term 
window Swin6 considering the inertial nature of network statuses  

 RB  T (n/K = 0/18): from the definition of the RB with the window Swin18 
(heuristically between the long-term window size and the short-term window size – in 
this experiment, we use Swin18 among Swin30, Swin24, Swin18, Swin12, Swin6) 
considering the inertial nature of network statuses  
 

When there are conflicts in the state transition, if any, we give high priority to SS, RS, HB, 
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RB, T in the order. For example, assume that network is in the T status and that the 30 latency 
history composed of 26 consecutive majorities followed by 4 consecutive outliers. This is rare 
but fulfills the conditions for both the HB and the RB transitions at the same time. In this case, 
according to the priority policy, the network status changes to the HB.  

4. Experiments and Results  

4.1 A Boundary Value between the Majority and the Outlier 
In section 3.1 we divide network latencies into two groups: the majority and the outlier. 

When we know the distribution of network latency in advance, we can use a static boundary 
value between the two groups directly. However, it might not be the case in most situations. 
Instead, a dynamic boundary value can be estimated by using a median and a minimum value 
of latency history. We aware that network latencies are random processes and that the majority 
follows the normal distribution. With a sliding window SwinK the boundary value can be 

 

boundary(t) = med𝐾(𝑡) + [med𝐾(𝑡) −  min𝐾(𝑡)]           (7) 

 

We can confirm that the estimation works by applying the statistics of the 24-hour RTT 
sample. That is, the median of 257 usec and the minimum of 215 usec result in the boundary 
value of 299 usec, which is close to the static boundary value of 300 usec we used in section 
3.1.  

 
Fig. 5. The boundary values of the 24-hour RTT sample for various window sizes, K. 

 
While we can contrive a float to sample a minimum and a median value of latency history, 

in this experiment we use an extra sliding window for simplicity. Fig. 5  shows the dynamic 
boundary values between the majority and the outlier groups for various window sizes when 
applied over the 24-hour RTT sample. We consider the window sizes of K = 60, 180, 360, 
which correspond to 10, 30, 60 minutes measurement period, respectively. From the graph we 
can see that the window size of K = 60 is not enough to reflect the latency history since the 
boundary value remains around the median in many cases. In this experiment, we arbitrarily 
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choose K = 180 for our convenience. With a window Swin180 the 8,640 RTT samples are 
divided into the five typical network statuses such that 26.5% of SS, 17.1% of RS, 14.5% of T, 
33.1% of RB, and 8.8% of HB. 

 

4.2 Prediction Accuracy across the Five Typical Network Statuses 
To evaluate the effectiveness of the network status classification we examine the 

prediction accuracy of the simple numerical models over the five typical network statuses. Fig. 
6 shows the prediction accuracy of the t_min6, the med12 and the t_avg30 models over the 
24-hour RTT sample dynamically applying the classification of network status on the fly. Also, 
shown for comparison are the overall prediction accuracy results of section 2.2. We can see 
that the overall prediction accuracy is close to that of RB, in which network latency oscillates 
up and down very badly. This means that without the status classification there would be no 
chance of accurate prediction and that we cannot expect any delicate network resource 
managements. It is desirable to detect network status and choose appropriate rules according 
to the status. We want to separate sand and gravel from a bottom of river.  

 
Fig. 6. The comparison of prediction accuracy for the five typical network statuses. 

 
While the absolute values of MSE depend on the geographic distance of a transmission 

path we’d rather focus on the relative values of them across different network statuses. The 
line graph with the secondary Y-axis of Fig. 6 presents a normalized MSE of the t_min6 model 
with respect to the overall case. We can see from the graph that the prediction accuracy falls as 
the network status changes from SS to RS, T, RB, HB in the order. Though the RTT values 
come from the same resources the differences in prediction accuracy are orders of magnitude 
between network statuses. It is true regardless of prediction model. We can say that the 
network statuses are correlated with oscillating behaviors of latency. More than 80% 
reductions in MSE has been found in stable statuses of the SS and the RS over the overall case. 
We can expect realistic planning and effective scheduling of network resources when 
networks in stable statuses. Burstiness is a nature of network latency but now we can filter out 
the bursty statuses.  
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Fig. 7. The round trip time to send a 64-byte probing packet was measured for a week. 

 
Table 1. A summary of the node used in the experiment. 

IP Location Distance # Hops 
165.194.95.137 Chung-Ang Univ., Seoul, Korea within ~1.0Km diameter 5 

 
To confirm the generality of the classification method for network status we repeat the 

same experiment on another set of network latency. Fig. 7 shows another RTT sample, which 
are collected within the Chung-Ang University campus for a week (between December 13 and 
December 19, 2013) and Table 1 summarizes the node used in this experiment. Packets can be 
corrupted or lost during the transmission through internet. There are 60,480 RTT samples and 
13 among them show time-out. The missing data is replaced with a global maximum latency 
value(11,300 usec) for the experiment. From the graph we can see relatively low fluctuations 
in latency during the night and the weekend as we expected. Other than that, it shows a form 
similar to that of Fig. 1. However, the measurements come from different resources and their 
statistics are different from those of Fig. 1. 
 

 
Fig. 8. Another comparison of prediction accuracy for the five typical network statuses. 
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Fig. 9. Normalized MSE of the t_min6 model for the five typical network statuses by date. 

 
Fig. 8 shows the prediction accuracy over the new set of latency data. Compared with the 

graph of Fig. 6, we can see that the absolute values of MSE are scaled down. It is expected 
since the difference between the maximum and the minimum values of the new set of latency 
data is less than that of the 24-hour RTT sample. As with the graph of Fig. 6, however, we can 
easily see the same patterns of prediction accuracy across the five typical network statuses. 
That is, the prediction accuracy falls appreciably as the network status changes from SS to RS, 
T, RB, HB in the order. The stable statuses show almost 80% reductions in MSE over the 
overall case. Also, Fig. 9 presents a normalized MSE of the t_min6 model for the five typical 
network statuses by date. Since network is more stable during weekend(Saturday and Sunday) 
we can see that the normalized MSE in the HB status is relatively high on those days. 
Depending on date the stable statuses show more than 90% reductions in MSE over the overall 
case. From these observations we can conclude that the classification of network status is quite 
effective to provide a simplified intuition of the stability and the burstiness of network latency. 

5. Conclusions 
Understanding the dynamic behaviors of network latency is of great interest in 

network-based applications. In this paper, we present a simple empirical method to classify 
network status and define five typical network statuses with respect to the stability of latency 
history - strongly stable(SS), relatively stable(RS), transient(T), relatively bursty(RB), and 
highly bursty(HB). The basic idea of the approach is that network traffic repeat cycles of 
congested states and that a variation of network latency is strongly correlated with the past 
history of the latency. We first differentiate between two types of network latency; the 
majority and the outlier. Then, by simply counting the number of outliers among the most 
recent latency history both in a long-term and a short-term aspect we determine networks’ 
status on the fly. Experiments with several simple numerical models show notable differences 
in prediction accuracy among the different network statuses. The classification of network 
status provides a simplified intuition of the stability and the burstiness of network latency. We 
expect that the proposed method can be used for scheduling, monitoring and planning network 
resources in many network-based applications. As future works, it would be interesting to 
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investigate the network status classification method with latency data sets of varying sizes and 
granularities. 
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