• 제목/요약/키워드: Classification Analysis

검색결과 8,044건 처리시간 0.037초

특성함수 및 k-최근접이웃 알고리즘을 이용한 국악기 분류 (Classification of Korean Traditional Musical Instruments Using Feature Functions and k-nearest Neighbor Algorithm)

  • 김석호;곽경섭;김재천
    • 한국멀티미디어학회논문지
    • /
    • 제9권3호
    • /
    • pp.279-286
    • /
    • 2006
  • 주파수 분포벡터를 이용한 분류방법을 국악기 분류 및 인식에 적용하였으며 분류에 사용되는 주파수 분포 벡터 중에서 리듬성분을 수치화한 평균피크값을 제안하였다. 대부분의 주파수 처리함수들은 주파수값의 평균, 통계적특성에 기반을 두고 있으며 국악기자동분류를 위해 신호의 평균, 분산, 영교차율, 균형주파수, 평균 피크값을 이용하여 실험하였다. 국악의 장르 구분을 위한 선행 연구로서 음악신호를 함수처리하고 k-최근접이웃 분류알고리즘을 적용하여 분류하였다. 기존의 주파수 분포벡터를 이용하여 발표되었던 서양음악의 분류 성공률 87%보다 향상된 94.44%의 성공률을 나타냈다.

  • PDF

Topic Extraction and Classification Method Based on Comment Sets

  • Tan, Xiaodong
    • Journal of Information Processing Systems
    • /
    • 제16권2호
    • /
    • pp.329-342
    • /
    • 2020
  • In recent years, emotional text classification is one of the essential research contents in the field of natural language processing. It has been widely used in the sentiment analysis of commodities like hotels, and other commentary corpus. This paper proposes an improved W-LDA (weighted latent Dirichlet allocation) topic model to improve the shortcomings of traditional LDA topic models. In the process of the topic of word sampling and its word distribution expectation calculation of the Gibbs of the W-LDA topic model. An average weighted value is adopted to avoid topic-related words from being submerged by high-frequency words, to improve the distinction of the topic. It further integrates the highest classification of the algorithm of support vector machine based on the extracted high-quality document-topic distribution and topic-word vectors. Finally, an efficient integration method is constructed for the analysis and extraction of emotional words, topic distribution calculations, and sentiment classification. Through tests on real teaching evaluation data and test set of public comment set, the results show that the method proposed in the paper has distinct advantages compared with other two typical algorithms in terms of subject differentiation, classification precision, and F1-measure.

핵형 분류를 위한 패턴 분류기 구현 (The Implementation of Pattern Classifier or Karyotype Classification)

  • 엄상희;남기곤;장용훈;이권순;정형환;김금석;전계록
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.133-136
    • /
    • 1997
  • The human chromosome analysis is widely used to diagnose genetic disease and various congenital anomalies. Many researches on automated chromosome karyotype analysis has been carried out, some of which produced commercial systems. However, there still remains much room or improving the accuracy of chromosome classification. In this paper, We propose an optimal pattern classifier by neural network to improve the accuracy of chromosome classification. The proposed pattern classifier was built up of multi-step multi-layer neural network(MMANN). We reconstructed chromosome image to improve the chromosome classification accuracy and extracted three morphological features parameters such as centromeric index(C.I.), relative length ratio(R.L.), and relative area ratio(R.A.). This Parameters employed as input in neural network by preprocessing twenty human chromosome images. The experiment results show that the chromosome classification error is reduced much more than that of the other classification methods.

  • PDF

TEMPORAL CLASSIFICATION METHOD FOR FORECASTING LOAD PATTERNS FROM AMR DATA

  • Lee, Heon-Gyu;Shin, Jin-Ho;Ryu, Keun-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.594-597
    • /
    • 2007
  • We present in this paper a novel mid and long term power load prediction method using temporal pattern mining from AMR (Automatic Meter Reading) data. Since the power load patterns have time-varying characteristic and very different patterns according to the hour, time, day and week and so on, it gives rise to the uninformative results if only traditional data mining is used. Also, research on data mining for analyzing electric load patterns focused on cluster analysis and classification methods. However despite the usefulness of rules that include temporal dimension and the fact that the AMR data has temporal attribute, the above methods were limited in static pattern extraction and did not consider temporal attributes. Therefore, we propose a new classification method for predicting power load patterns. The main tasks include clustering method and temporal classification method. Cluster analysis is used to create load pattern classes and the representative load profiles for each class. Next, the classification method uses representative load profiles to build a classifier able to assign different load patterns to the existing classes. The proposed classification method is the Calendar-based temporal mining and it discovers electric load patterns in multiple time granularities. Lastly, we show that the proposed method used AMR data and discovered more interest patterns.

  • PDF

Dynamic Text Categorizing Method using Text Mining and Association Rule

  • Kim, Young-Wook;Kim, Ki-Hyun;Lee, Hong-Chul
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권10호
    • /
    • pp.103-109
    • /
    • 2018
  • In this paper, we propose a dynamic document classification method which breaks away from existing document classification method with artificial categorization rules focusing on suppliers and has changing categorization rules according to users' needs or social trends. The core of this dynamic document classification method lies in the fact that it creates classification criteria real-time by using topic modeling techniques without standardized category rules, which does not force users to use unnecessary frames. In addition, it can also search the details through the relevance analysis by calculating the relationship between the words that is difficult to grasp by word frequency alone. Rather than for logical and systematic documents, this method proposed can be used more effectively for situation analysis and retrieving information of unstructured data which do not fit the category of existing classification such as VOC (Voice Of Customer), SNS and customer reviews of Internet shopping malls and it can react to users' needs flexibly. In addition, it has no process of selecting the classification rules by the suppliers and in case there is a misclassification, it requires no manual work, which reduces unnecessary workload.

대학 캠퍼스 공간적 지표에 의한 유형화에 관한 연구 (A Study on the Classification by the Spatial Index of the University Campuses)

  • 김천일;신소영;김익환
    • 교육시설 논문지
    • /
    • 제23권4호
    • /
    • pp.3-10
    • /
    • 2016
  • This paper presents the investigation results on the classification of the university campuses. For the classification, we selected the spatial index as the evaluation indicator since the environmental factors and maintenance methods vary from university campus to university campus. For the study, we used eight spatial indices of the 30 national universities. This paper provides the spatial characteristics of different campus types, presents campus classification analysis as a future research approach to campus maintenance, and provides the data for the future study of comparison among universities. The results are as follows. 1) The classification investigation categorized the university campuses into three groups. Type 1 is a large-scale type, located near downtown. Type 2 is a medium-scale type, located at a remote site from downtown. Type 3 is a small-scale type, which is located comparatively near downtown. 2) Type 1 is a large-scale mixed area type, and 13 universities belong to this group. Type 2 is a medium-scale suburban area type, and six universities are in this group. Finally, Type 3 is a small-scale downtown area type, and 11 universities belong to this group.

Seabed Sediment Classification Algorithm using Continuous Wavelet Transform

  • Lee, Kibae;Bae, Jinho;Lee, Chong Hyun;Kim, Juho;Lee, Jaeil;Cho, Jung Hong
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제2권4호
    • /
    • pp.202-208
    • /
    • 2016
  • In this paper, we propose novel seabed sediment classification algorithm using feature obtained by continuous wavelet transform (CWT). Contrast to previous researches using direct reflection coefficient of seabed which is function of frequency and is highly influenced by sediment types, we develop an algorithm using both direct reflection signal and backscattering signal. In order to obtain feature vector, we employ CWT of the signal and obtain histograms extracted from local binary patterns of the scalogram. The proposed algorithm also adopts principal component analysis (PCA) to reduce dimension of the feature vector so that it requires low computational cost to classify seabed sediment. For training and classification, we adopts K-means clustering algorithm which can be done with low computational cost and does not require prior information of the sediment. To verify the proposed algorithm, we obtain field data measured at near Jeju island and show that the proposed classification algorithm has reliable discrimination performance by comparing the classification results with actual physical properties of the sediments.

KDC 제5판의 주기분석에 관한 연구 (A Study on the Notes Analysis of KDC 5th Edition)

  • 정옥경
    • 한국비블리아학회지
    • /
    • 제22권3호
    • /
    • pp.207-228
    • /
    • 2011
  • 분류표에서 주기는 분류항목과 기호에 대한 유용한 정보를 제공하여 분류의 정확성과 일관성을 향상시켜 준다. KDC에서도 여러 가지 유형의 주기를 사용하고 있으나, 급변하는 학문의 진전과 확대를 따르기에는 주기의 이용이 상당히 미흡하다. 따라서 본 연구의 목적은 KDC에 적합한 주기유형과 개선방안을 제시하는 것이다. 이 목적을 위하여 KDC의 주기유형의 변천과 DDC23판, NDC신정9판, KDC5판의 서문에 제시하고 있는 주기를 분석하고, 각 분류표에서 실제로 사용되고 있는 주기의 유형을 비교 분석하여 KDC5판의 주기의 문제점과 개선방안을 제시하였다.

KCD 7과 OIICS의 분류기준을 활용한 국내 연구실 사고의 통계적 분석 (Statistical Analysis of Domestic Laboratory Accidents using Classification Criteria of KCD 7 and OIICS)

  • 나예지;장남권;원정훈
    • 한국안전학회지
    • /
    • 제34권3호
    • /
    • pp.42-49
    • /
    • 2019
  • This study statistically analyzed the laboratory accidents by investigating 806 laboratory accident survey reports which were officially submitted to government from 2013 to June 2017. After comparing domestic and foreign accident classification criteria, the laboratory accidents were classified using KCD7(Korean Standard Classification of Diseases) and OIICS(Occupational Injury and Illness Classification System) criteria. For the type and part of injury, KCD7 classification criteria was adopted. And, for the cause and occurrence type of accidents, OIICS was adopted to analyze the laboratory accidents. Most of injuries happened to the wrist and hand caused by sharp materials or chemical materials. The analysis of accident cause showed that accidents resulted in medical practice and accidents from handtools and chemical materials such as acid and alkali frequently occurred. The major occurrence types of laboratory accidents was body exposure to the chemical materials such as hydrochloric acid and sulfuric acid. In addition, the accidents resulted in destroy of grasped object or falling object were frequently reported.

Malware Classification using Dynamic Analysis with Deep Learning

  • Asad Amin;Muhammad Nauman Durrani;Nadeem Kafi;Fahad Samad;Abdul Aziz
    • International Journal of Computer Science & Network Security
    • /
    • 제23권8호
    • /
    • pp.49-62
    • /
    • 2023
  • There has been a rapid increase in the creation and alteration of new malware samples which is a huge financial risk for many organizations. There is a huge demand for improvement in classification and detection mechanisms available today, as some of the old strategies like classification using mac learning algorithms were proved to be useful but cannot perform well in the scalable auto feature extraction scenario. To overcome this there must be a mechanism to automatically analyze malware based on the automatic feature extraction process. For this purpose, the dynamic analysis of real malware executable files has been done to extract useful features like API call sequence and opcode sequence. The use of different hashing techniques has been analyzed to further generate images and convert them into image representable form which will allow us to use more advanced classification approaches to classify huge amounts of images using deep learning approaches. The use of deep learning algorithms like convolutional neural networks enables the classification of malware by converting it into images. These images when fed into the CNN after being converted into the grayscale image will perform comparatively well in case of dynamic changes in malware code as image samples will be changed by few pixels when classified based on a greyscale image. In this work, we used VGG-16 architecture of CNN for experimentation.