• 제목/요약/키워드: Classification Algorithm

검색결과 2,923건 처리시간 0.026초

초중등학생 대상 알고리즘 교육을 위한 분류체계 모형 설계 (Classification System Model Design for Algorithm Education for Elementary and Secondary Students)

  • 이영호;구덕회
    • 정보교육학회논문지
    • /
    • 제21권3호
    • /
    • pp.297-307
    • /
    • 2017
  • 본 연구의 목적은 초중등학생 대상 알고리즘 교육을 위한 알고리즘 분류체계를 제안하는 것이다. 연구자는 알고리즘의 구성요소를 정의하고, 분석합성식 방법으로 알고리즘 분류체계를 표현하였다. 연구의 내용은 다음과 같다. 첫째, 분류의 목적과 분류의 종류에 대한 이론적인 탐색을 실시하였다. 둘째, 기존에 제안된 알고리즘 내용에 대한 분류체계의 내용과 그 한계에 대해 살펴보았다. 이와 더불어 알고리즘 교육 연구에서 사용되었던 알고리즘 교육 내용 및 선정 기준에 대해 살펴보았다. 셋째, 알고리즘의 분류를 위해 알고리즘 구성요소를 NRC에서 제시한 핵심 아이디어와 관통 개념을 사용하여 재정의하였다. 그리고 알고리즘 관통 개념을 디자인 구조와 자료구조로 세분화하여 그 내용을 제시하였으며, 이 내용을 분석합성식 분류체계를 사용하여 표현하였다. 마지막으로 전문가 집단의 검토를 통해 제안한 내용에 대한 타당도를 검증하였다. 알고리즘 분류체계에 대한 연구는 알고리즘 교육에 있어 내용 선정 및 교육 방법에 많은 시사점을 제공할 것으로 기대한다.

퍼지 알고리즘의 융합에 의한 다중분광 영상의 패턴분류 (Pattern Classification of Multi-Spectral Satellite Images based on Fusion of Fuzzy Algorithms)

  • 전영준;김진일
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권7호
    • /
    • pp.674-682
    • /
    • 2005
  • 본 논문에서는 다중분광 영상의 분류를 위하여 퍼지 G-K(Gustafson- Kessel) 알고리즘과 PCM 알고리즘을 융합한 분류방법을 제안하였다. 제안된 방법은 학습데이타를 이용하여 퍼지 G-K 알고리즘을 수행한 후 그 결과를 이용하여 PCM 알고리즘을 수행한다 PCM 알고리즘과 퍼지 G-K 알고리즘 분류결과를 비교하여 그 결과가 일치하면 해당 항목으로 분류항목을 결정한다. 일치하지 않는 화소는 PCM 알고리즘의 평균내부거리 안쪽에 있는 화소들을 새로운 학습데이타로 하여 베이시안 최대우도 분류를 수행하여 분류항목을 결정한다. 평균내부거리 안쪽에 있는 화소 데이타는 정규분포형태를 보여준다. 다차원 다중분광 영상인 IKONOS와 LANDSAT TM 위성영상을 이용하여 제안된 알고리즘의 효율성을 검증한 결과 퍼지 G-K 알고리즘과 PCM 알고리즘 그리고 전통적인 분류 방법인 최대우도 분류 알고리즘보다 전체 정확도가 더 높은 결과를 얻을 수 있었다

Negative Selection Algorithm for DNA Pattern Classification

  • Lee, Dong-Wook;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.190-195
    • /
    • 2004
  • We propose a pattern classification algorithm using self-nonself discrimination principle of immune cells and apply it to DNA pattern classification problem. Pattern classification problem in bioinformatics is very important and frequent one. In this paper, we propose a classification algorithm based on the negative selection of the immune system to classify DNA patterns. The negative selection is the process to determine an antigenic receptor that recognize antigens, nonself cells. The immune cells use this antigen receptor to judge whether a self or not. If one composes ${\eta}$ groups of antigenic receptor for ${\eta}$ different patterns, these receptor groups can classify into ${\eta}$ patterns. We propose a pattern classification algorithm based on the negative selection in nucleotide base level and amino acid level. Also to show the validity of our algorithm, experimental results of RNA group classification are presented.

  • PDF

Hashing을 사용한 Scalable Packet Classification 알고리즘 연구 (Scalable Packet Classification Algorithm through Mashing)

  • 허재성;최린
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(1)
    • /
    • pp.113-116
    • /
    • 2002
  • It is required to network to make more intelligent packet processing and forwarding for increasing bandwidth and various services. Classification provides these intelligent to network which is acquired by increasing number of rules in classification rule set. In this Paper, we propose a classification algorithm efficient to scalable rule set ahead as well as Present small rule set. This algorithm has competition to existing methods by performance and advantage that it is mixed with another algorithm because il does not change original shape of rule set.

  • PDF

유전 알고리듬 기반 집단분류기법의 개발과 성과평가 : 채권등급 평가를 중심으로 (Design and Performance Measurement of a Genetic Algorithm-based Group Classification Method : The Case of Bond Rating)

  • 민재형;정철우
    • 한국경영과학회지
    • /
    • 제32권1호
    • /
    • pp.61-75
    • /
    • 2007
  • The purpose of this paper is to develop a new group classification method based on genetic algorithm and to com-pare its prediction performance with those of existing methods in the area of bond rating. To serve this purpose, we conduct various experiments with pilot and general models. Specifically, we first conduct experiments employing two pilot models : the one searching for the cluster center of each group and the other one searching for both the cluster center and the attribute weights in order to maximize classification accuracy. The results from the pilot experiments show that the performance of the latter in terms of classification accuracy ratio is higher than that of the former which provides the rationale of searching for both the cluster center of each group and the attribute weights to improve classification accuracy. With this lesson in mind, we design two generalized models employing genetic algorithm : the one is to maximize the classification accuracy and the other one is to minimize the total misclassification cost. We compare the performance of these two models with those of existing statistical and artificial intelligent models such as MDA, ANN, and Decision Tree, and conclude that the genetic algorithm-based group classification method that we propose in this paper significantly outperforms the other methods in respect of classification accuracy ratio as well as misclassification cost.

음악 장르 분류를 위한 새로운 자동 Taxonomy 구축 알고리즘 (New Automatic Taxonomy Generation Algorithm for the Audio Genre Classification)

  • 최택성;문선국;박영철;윤대희;이석필
    • 한국음향학회지
    • /
    • 제27권3호
    • /
    • pp.111-118
    • /
    • 2008
  • 본 논문에서는 음악 장르 분류를 위한 새로운 자동 Taxonomy 구축 알고리즘을 제안한다. 제안된 알고리즘은 모든 가능한 노드들의 분류 확률을 예측하여 예측된 분류 성능값이 가장 좋은 조합을 Taxonomy로 구축하는 것이다. 제안된 알고리즘에서의 분류 확률 예측은 훈련 데이터를 k-fold cross validation을 이용하여 분류기에 적용함으로써 이루어진다. 제안된 알고리즘을 기반으로 한 분류 성능 측정은 2 클래스로 이루어진 각각의 노드에 2개 범주 분류에 효과적인 support vector machine을 적용함으로써 이루어진다. 제안된 알고리즘의 성능 검증을 위해 음색, 리듬, 피치 등 오디오 신호의 특징을 나타내는 다양한 파라미터를 오디오 신호로부터 추출하여 제안된 알고리즘과 기존의 다중 범주 분류기들을 이용하여 분류성능을 평가하였다. 다양한 실험결과 제안된 알고리즘은 기존의 알고리즘에 비하여 5%에서 25%정도의 분류 성능이 향상된 것을 확인할 수 있었고 특히 낮은 차원의 특징벡터를 이용한 분류 실험에서는 10% 에서 25% 향상된 좋은 성능을 보였다.

인공지지체 불량 검출을 위한 딥러닝 모델 성능 비교에 관한 연구 (A Comparative Study on Deep Learning Models for Scaffold Defect Detection)

  • 이송연;허용정
    • 반도체디스플레이기술학회지
    • /
    • 제20권2호
    • /
    • pp.109-114
    • /
    • 2021
  • When we inspect scaffold defect using sight, inspecting performance is decrease and inspecting time is increase. We need for automatically scaffold defect detection method to increase detection accuracy and reduce detection times. In this paper. We produced scaffold defect classification models using densenet, alexnet, vggnet algorithms based on CNN. We photographed scaffold using multi dimension camera. We learned scaffold defect classification model using photographed scaffold images. We evaluated the scaffold defect classification accuracy of each models. As result of evaluation, the defect classification performance using densenet algorithm was at 99.1%. The defect classification performance using VGGnet algorithm was at 98.3%. The defect classification performance using Alexnet algorithm was at 96.8%. We were able to quantitatively compare defect classification performance of three type algorithms based on CNN.

이메일 추천 시스템의 분류 향상을 위한 3단계 전처리 알고리즘 (A Three-Step Preprocessing Algorithm for Enhanced Classification of E-Mail Recommendation System)

  • 조동섭;정옥란
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권4호
    • /
    • pp.251-258
    • /
    • 2005
  • Automatic document classification may differ significantly according to the characteristics of documents that are subject to classification, as well as classifier's performance. This research identifies e-mail document's characteristics to apply a three-step preprocessing algorithm that can minimize e-mail document's atypical characteristics. In the first 5go, uncertain based sampling algorithm that used Mean Absolute Deviation(MAD), is used to address the question of selection learning document for the rule generation at the time of classification. In the subsequent stage, Weighted vlaue assigning method by attribute is applied to increase the discriminating capability of the terms that appear on the title on the e-mail document characteristic level. in the third and last stage, accuracy level during classification by each category is increased by using Naive Bayesian Presumptive Algorithm's Dynamic Threshold. And, we implemented an E-Mail Recommendtion System using a three-step preprocessing algorithm the enable users for direct and optimal classification with the recommendation of the applicable category when a mail arrives.

Alsat-2B/Sentinel-2 Imagery Classification Using the Hybrid Pigeon Inspired Optimization Algorithm

  • Arezki, Dounia;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • 제17권4호
    • /
    • pp.690-706
    • /
    • 2021
  • Classification is a substantial operation in data mining, and each element is distributed taking into account its feature values in the corresponding class. Metaheuristics have been widely used in attempts to solve satellite image classification problems. This article proposes a hybrid approach, the flower pigeons-inspired optimization algorithm (FPIO), and the local search method of the flower pollination algorithm is integrated into the pigeon-inspired algorithm. The efficiency and power of the proposed FPIO approach are displayed with a series of images, supported by computational results that demonstrate the cogency of the proposed classification method on satellite imagery. For this work, the Davies-Bouldin Index is used as an objective function. FPIO is applied to different types of images (synthetic, Alsat-2B, and Sentinel-2). Moreover, a comparative experiment between FPIO and the genetic algorithm genetic algorithm is conducted. Experimental results showed that GA outperformed FPIO in matters of time computing. However, FPIO provided better quality results with less confusion. The overall experimental results demonstrate that the proposed approach is an efficient method for satellite imagery classification.

Seabed Sediment Classification Algorithm using Continuous Wavelet Transform

  • Lee, Kibae;Bae, Jinho;Lee, Chong Hyun;Kim, Juho;Lee, Jaeil;Cho, Jung Hong
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제2권4호
    • /
    • pp.202-208
    • /
    • 2016
  • In this paper, we propose novel seabed sediment classification algorithm using feature obtained by continuous wavelet transform (CWT). Contrast to previous researches using direct reflection coefficient of seabed which is function of frequency and is highly influenced by sediment types, we develop an algorithm using both direct reflection signal and backscattering signal. In order to obtain feature vector, we employ CWT of the signal and obtain histograms extracted from local binary patterns of the scalogram. The proposed algorithm also adopts principal component analysis (PCA) to reduce dimension of the feature vector so that it requires low computational cost to classify seabed sediment. For training and classification, we adopts K-means clustering algorithm which can be done with low computational cost and does not require prior information of the sediment. To verify the proposed algorithm, we obtain field data measured at near Jeju island and show that the proposed classification algorithm has reliable discrimination performance by comparing the classification results with actual physical properties of the sediments.