• Title/Summary/Keyword: Classification Algorithm

검색결과 2,923건 처리시간 0.033초

Classification System Model Design for Algorithm Education for Elementary and Secondary Students (초중등학생 대상 알고리즘 교육을 위한 분류체계 모형 설계)

  • Lee, Young-ho;Koo, Duk-hoi
    • Journal of The Korean Association of Information Education
    • /
    • 제21권3호
    • /
    • pp.297-307
    • /
    • 2017
  • The purpose of this study is to propose algorithm classification system for algorithm education for Elementary and Secondary Students. We defines the components of the algorithm and expresses the algorithm classification system by the analysis synthesis method. The contents of the study are as follows. First, we conducted a theoretical search on the classification purpose and classification. Second, the contents and limitations of the classification system for the proposed algorithm contents were examined. In addition, we examined the contents and selection criteria of algorithms used in algorithm education research. Third, the algorithm components were redefined using the core idea and crosscutting concept proposed by the NRC. And the crosscutting concept of algorithm is subdivided into algorithm data structure and algorithm design strategy, and its contents are presented using analytic synthesis classification scheme. Finally, the validity of the proposed contents was verified by the review of the expert group. It is expected that the study on the algorithm classification system will provide many implications for the contents selection and training method in the algorithm education.

Pattern Classification of Multi-Spectral Satellite Images based on Fusion of Fuzzy Algorithms (퍼지 알고리즘의 융합에 의한 다중분광 영상의 패턴분류)

  • Jeon, Young-Joon;Kim, Jin-Il
    • Journal of KIISE:Software and Applications
    • /
    • 제32권7호
    • /
    • pp.674-682
    • /
    • 2005
  • This paper proposes classification of multi-spectral satellite image based on fusion of fuzzy G-K (Gustafson-Kessel) algorithm and PCM algorithm. The suggested algorithm establishes the initial cluster centers by selecting training data from each category, and then executes the fuzzy G-K algorithm. PCM algorithm perform using classification result of the fuzzy G-K algorithm. The classification categories are allocated to the corresponding category when the results of classification by fuzzy G-K algorithm and PCM algorithm belong to the same category. If the classification result of two algorithms belongs to the different category, the pixels are allocated by Bayesian maximum likelihood algorithm. Bayesian maximum likelihood algorithm uses the data from the interior of the average intracluster distance. The information of the pixels within the average intracluster distance has a positive normal distribution. It improves classification result by giving a positive effect in Bayesian maximum likelihood algorithm. The proposed method is applied to IKONOS and Landsat TM remote sensing satellite image for the test. As a result, the overall accuracy showed a better outcome than individual Fuzzy G-K algorithm and PCM algorithm or the conventional maximum likelihood classification algorithm.

Negative Selection Algorithm for DNA Pattern Classification

  • Lee, Dong-Wook;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.190-195
    • /
    • 2004
  • We propose a pattern classification algorithm using self-nonself discrimination principle of immune cells and apply it to DNA pattern classification problem. Pattern classification problem in bioinformatics is very important and frequent one. In this paper, we propose a classification algorithm based on the negative selection of the immune system to classify DNA patterns. The negative selection is the process to determine an antigenic receptor that recognize antigens, nonself cells. The immune cells use this antigen receptor to judge whether a self or not. If one composes ${\eta}$ groups of antigenic receptor for ${\eta}$ different patterns, these receptor groups can classify into ${\eta}$ patterns. We propose a pattern classification algorithm based on the negative selection in nucleotide base level and amino acid level. Also to show the validity of our algorithm, experimental results of RNA group classification are presented.

  • PDF

Scalable Packet Classification Algorithm through Mashing (Hashing을 사용한 Scalable Packet Classification 알고리즘 연구)

  • Heo, Jae-Sung;Choi, Lynn
    • Proceedings of the IEEK Conference
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(1)
    • /
    • pp.113-116
    • /
    • 2002
  • It is required to network to make more intelligent packet processing and forwarding for increasing bandwidth and various services. Classification provides these intelligent to network which is acquired by increasing number of rules in classification rule set. In this Paper, we propose a classification algorithm efficient to scalable rule set ahead as well as Present small rule set. This algorithm has competition to existing methods by performance and advantage that it is mixed with another algorithm because il does not change original shape of rule set.

  • PDF

Design and Performance Measurement of a Genetic Algorithm-based Group Classification Method : The Case of Bond Rating (유전 알고리듬 기반 집단분류기법의 개발과 성과평가 : 채권등급 평가를 중심으로)

  • Min, Jae-H.;Jeong, Chul-Woo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • 제32권1호
    • /
    • pp.61-75
    • /
    • 2007
  • The purpose of this paper is to develop a new group classification method based on genetic algorithm and to com-pare its prediction performance with those of existing methods in the area of bond rating. To serve this purpose, we conduct various experiments with pilot and general models. Specifically, we first conduct experiments employing two pilot models : the one searching for the cluster center of each group and the other one searching for both the cluster center and the attribute weights in order to maximize classification accuracy. The results from the pilot experiments show that the performance of the latter in terms of classification accuracy ratio is higher than that of the former which provides the rationale of searching for both the cluster center of each group and the attribute weights to improve classification accuracy. With this lesson in mind, we design two generalized models employing genetic algorithm : the one is to maximize the classification accuracy and the other one is to minimize the total misclassification cost. We compare the performance of these two models with those of existing statistical and artificial intelligent models such as MDA, ANN, and Decision Tree, and conclude that the genetic algorithm-based group classification method that we propose in this paper significantly outperforms the other methods in respect of classification accuracy ratio as well as misclassification cost.

New Automatic Taxonomy Generation Algorithm for the Audio Genre Classification (음악 장르 분류를 위한 새로운 자동 Taxonomy 구축 알고리즘)

  • Choi, Tack-Sung;Moon, Sun-Kook;Park, Young-Cheol;Youn, Dae-Hee;Lee, Seok-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • 제27권3호
    • /
    • pp.111-118
    • /
    • 2008
  • In this paper, we propose a new automatic taxonomy generation algorithm for the audio genre classification. The proposed algorithm automatically generates hierarchical taxonomy based on the estimated classification accuracy at all possible nodes. The estimation of classification accuracy in the proposed algorithm is conducted by applying the training data to classifier using k-fold cross validation. Subsequent classification accuracy is then to be tested at every node which consists of two clusters by applying one-versus-one support vector machine. In order to assess the performance of the proposed algorithm, we extracted various features which represent characteristics such as timbre, rhythm, pitch and so on. Then, we investigated classification performance using the proposed algorithm and previous flat classifiers. The classification accuracy reaches to 89 percent with proposed scheme, which is 5 to 25 percent higher than the previous flat classification methods. Using low-dimensional feature vectors, in particular, it is 10 to 25 percent higher than previous algorithms for classification experiments.

A Comparative Study on Deep Learning Models for Scaffold Defect Detection (인공지지체 불량 검출을 위한 딥러닝 모델 성능 비교에 관한 연구)

  • Lee, Song-Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • 제20권2호
    • /
    • pp.109-114
    • /
    • 2021
  • When we inspect scaffold defect using sight, inspecting performance is decrease and inspecting time is increase. We need for automatically scaffold defect detection method to increase detection accuracy and reduce detection times. In this paper. We produced scaffold defect classification models using densenet, alexnet, vggnet algorithms based on CNN. We photographed scaffold using multi dimension camera. We learned scaffold defect classification model using photographed scaffold images. We evaluated the scaffold defect classification accuracy of each models. As result of evaluation, the defect classification performance using densenet algorithm was at 99.1%. The defect classification performance using VGGnet algorithm was at 98.3%. The defect classification performance using Alexnet algorithm was at 96.8%. We were able to quantitatively compare defect classification performance of three type algorithms based on CNN.

A Three-Step Preprocessing Algorithm for Enhanced Classification of E-Mail Recommendation System (이메일 추천 시스템의 분류 향상을 위한 3단계 전처리 알고리즘)

  • Jeong Ok-Ran;Cho Dong-Sub
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • 제54권4호
    • /
    • pp.251-258
    • /
    • 2005
  • Automatic document classification may differ significantly according to the characteristics of documents that are subject to classification, as well as classifier's performance. This research identifies e-mail document's characteristics to apply a three-step preprocessing algorithm that can minimize e-mail document's atypical characteristics. In the first 5go, uncertain based sampling algorithm that used Mean Absolute Deviation(MAD), is used to address the question of selection learning document for the rule generation at the time of classification. In the subsequent stage, Weighted vlaue assigning method by attribute is applied to increase the discriminating capability of the terms that appear on the title on the e-mail document characteristic level. in the third and last stage, accuracy level during classification by each category is increased by using Naive Bayesian Presumptive Algorithm's Dynamic Threshold. And, we implemented an E-Mail Recommendtion System using a three-step preprocessing algorithm the enable users for direct and optimal classification with the recommendation of the applicable category when a mail arrives.

Alsat-2B/Sentinel-2 Imagery Classification Using the Hybrid Pigeon Inspired Optimization Algorithm

  • Arezki, Dounia;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • 제17권4호
    • /
    • pp.690-706
    • /
    • 2021
  • Classification is a substantial operation in data mining, and each element is distributed taking into account its feature values in the corresponding class. Metaheuristics have been widely used in attempts to solve satellite image classification problems. This article proposes a hybrid approach, the flower pigeons-inspired optimization algorithm (FPIO), and the local search method of the flower pollination algorithm is integrated into the pigeon-inspired algorithm. The efficiency and power of the proposed FPIO approach are displayed with a series of images, supported by computational results that demonstrate the cogency of the proposed classification method on satellite imagery. For this work, the Davies-Bouldin Index is used as an objective function. FPIO is applied to different types of images (synthetic, Alsat-2B, and Sentinel-2). Moreover, a comparative experiment between FPIO and the genetic algorithm genetic algorithm is conducted. Experimental results showed that GA outperformed FPIO in matters of time computing. However, FPIO provided better quality results with less confusion. The overall experimental results demonstrate that the proposed approach is an efficient method for satellite imagery classification.

Seabed Sediment Classification Algorithm using Continuous Wavelet Transform

  • Lee, Kibae;Bae, Jinho;Lee, Chong Hyun;Kim, Juho;Lee, Jaeil;Cho, Jung Hong
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제2권4호
    • /
    • pp.202-208
    • /
    • 2016
  • In this paper, we propose novel seabed sediment classification algorithm using feature obtained by continuous wavelet transform (CWT). Contrast to previous researches using direct reflection coefficient of seabed which is function of frequency and is highly influenced by sediment types, we develop an algorithm using both direct reflection signal and backscattering signal. In order to obtain feature vector, we employ CWT of the signal and obtain histograms extracted from local binary patterns of the scalogram. The proposed algorithm also adopts principal component analysis (PCA) to reduce dimension of the feature vector so that it requires low computational cost to classify seabed sediment. For training and classification, we adopts K-means clustering algorithm which can be done with low computational cost and does not require prior information of the sediment. To verify the proposed algorithm, we obtain field data measured at near Jeju island and show that the proposed classification algorithm has reliable discrimination performance by comparing the classification results with actual physical properties of the sediments.