• 제목/요약/키워드: Classification Accuracy Test

검색결과 400건 처리시간 0.025초

세포독성 자료를 이용한 분류 알고리즘 성능 비교 (Comparison of the performance of classification algorithms using cytotoxicity data)

  • 윤여창;정의배;조나래;주수인;이성덕
    • 응용통계연구
    • /
    • 제31권3호
    • /
    • pp.417-426
    • /
    • 2018
  • 최근 동물실험의 대체방법 중 하나로 쥐의 줄기세포 유래 배상체를 이용하여 독성을 시험하는 방법이 개발되었다. 이는 동물에 직접 약물을 주입하는 것이 아닌 배상체 세포에 약물을 투입하여 세포의 변화에 따른 측정값들을 얻는 방법이다. 본 연구에서는 다범주 세포독성 자료를 이용해 통계적 기법인 판별분석(discriminant analysis)과 머신러닝 기법인 서포트 벡터 머신(support vector machine), 인공신경망(artificial neural network), k-인접이웃분류(k-nearest neighbor)의 성능을 비교하였다. 알고리즘의 성능은 분류 정확도(accuracy)와 가중카파계수(weighted Cohen's kappa coefficient)로 비교하였다.

Bayesian Model for the Classification of GPCR Agonists and Antagonists

  • Choi, In-Hee;Kim, Han-Jo;Jung, Ji-Hoon;Nam, Ky-Youb;Yoo, Sung-Eun;Kang, Nam-Sook;No, Kyoung-Tai
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권8호
    • /
    • pp.2163-2169
    • /
    • 2010
  • G-protein coupled receptors (GPCRs) are involved in a wide variety of physiological processes and are known to be targets for nearly 50% of drugs. The various functions of GPCRs are affected by their cognate ligands which are mainly classified as agonists and antagonists. The purpose of this study is to develop a Bayesian classification model, that can predict a compound as either human GPCR agonist or antagonist. Total 6627 compounds experimentally determined as either GPCR agonists or antagonists covering all the classes of GPCRs were gathered to comprise the dataset. This model distinguishes GPCR agonists from GPCR antagonists by using chemical fingerprint, FCFP_6. The model revealed distinctive structural characteristics between agonistic and antagonistic compounds: in general, 1) GPCR agonists were flexible and had aliphatic amines, and 2) GPCR antagonists had planar groups and aromatic amines. This model showed very good discriminative ability in general, with pretty good discriminant statistics for the training set (accuracy: 90.1%) and a good predictive ability for the test set (accuracy: 89.2%). Also, receiver operating characteristic (ROC) plot showed the area under the curve (AUC) to be 0.957, and Matthew's Correlation Coefficient (MCC) value was 0.803. The quality of our model suggests that it could aid to classify the compounds as either GPCR agonists or antagonists, especially in the early stages of the drug discovery process.

SVM(Support Vector Machine) 알고리즘 기반의 EEG(Electroencephalogram) 신호 분류 (EEG Signal Classification based on SVM Algorithm)

  • 이상원;조한진;채철주
    • 한국융합학회논문지
    • /
    • 제11권2호
    • /
    • pp.17-22
    • /
    • 2020
  • 본 논문에서는 사용자의 EEG(Electroencephalogram)신호를 측정하여 SVM(Support Vector Machine) 알고리즘을 이용하여 EEG 신호룰 분류하고 신호의 정확도를 측정하였다. 사용자의 EEG 신호를 측정하기 위해 남·여를 구분하여 실험을 진행하였으며, EEG 신호 측정은 단채널 EEG 디바이스를 이용하였다. EEG 디바이스를 이용하여 사용자의 EEG 신호를 측정한 결과는 R을 이용하여 분석하였다. 또한 SVM의 분류 성능이 최고가 되는 특정 벡터의 조합을 적용시켜 EEG 측정 실험 데이터를 80:20(훈련 데이터: 테스트 데이터) 비율로 예측해 본 결과 인식률 93.2% 의 예측 정확도를 보였다. 본 논문에서는 사용자의 EEG 신호를 약 93.2% 정도로 인식할 수 있었으며, SVM 알고리즘의 간단한 선형 분류만으로 수행이 가능하다는 점은 EEG 신호를 이용하여 생체인증에 다양하게 활용될 수 있음을 제시하였다.

딥러닝 기반의 영상분할을 이용한 토지피복분류 (Land Cover Classification Using Sematic Image Segmentation with Deep Learning)

  • 이성혁;김진수
    • 대한원격탐사학회지
    • /
    • 제35권2호
    • /
    • pp.279-288
    • /
    • 2019
  • 본 연구에서는 항공정사영상을 이용하여 SegNet 기반의 의미분할을 수행하고, 토지피복분류에서의 그 성능을 평가하였다. 의미분할을 위한 분류 항목을 4가지(시가화건조지역, 농지, 산림, 수역)로 선정하였고, 항공정사영상과 세분류 토지피복도를 이용하여 총 2,000개의 데이터셋을 8:2 비율로 훈련(1,600개) 및 검증(400개)로 구분하여 구축하였다. 구축된 데이터셋은 훈련과 검증으로 나누어 학습하였고, 모델 학습 시 정확도에 영향을 미치는 하이퍼파라미터의 변화에 따른 검증 정확도를 평가하였다. SegNet 모델 검증 결과 반복횟수 100,000회, batch size 5에서 가장 높은 성능을 보였다. 이상과 같이 훈련된 SegNet 모델을 이용하여 테스트 데이터셋 200개에 대한 의미분할을 수행한 결과, 항목별 정확도는 농지(87.89%), 산림(87.18%), 수역(83.66%), 시가화건조지역(82.67%), 전체 분류정확도는 85.48%로 나타났다. 이 결과는 기존의 항공영상을 활용한 토지피복분류연구보다 향상된 정확도를 나타냈으며, 딥러닝 기반 의미분할 기법의 적용 가능성이 충분하다고 판단된다. 향후 다양한 채널의 자료와 지수의 활용과 함께 분류 정확도 향상에 크게 기여할 수 있을 것으로 기대된다.

뉴럴네트워크(NEWFM)를 이용한 심근경색의 특징추출과 분류 (Feature selection and Classification of Heart attack Using NEWFM of Neural Network)

  • 윤희진
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권5호
    • /
    • pp.151-155
    • /
    • 2019
  • 최근 심근경색은 중장년층의 돌연사의 80%로 밝혀졌다. 심근경색의 발병 원인은 복합적이고 갑자기 발생하게 되어 예방이나 건강검진을 하더라도 발병을 예측하기 어렵다. 따라서 빠른 진단과 적절한 치료가 가장 중요하다. 이 논문에서는 심근경색에 대한 정확하고 빠른 진단을 위해 가중퍼지소속함수를 이용한 신경망으로 정상과 비정상 분류에 대한 정확도를 나타내었다. 실험에 사용된 데이터는 14개의 특징과 303개의 샘플 데이터로 이루어진 UCI Machine Learning Repository에서 제공하는 데이터 사용하였다. 2개의 특징을 선택하여 제거하였다. 특징선택을 위한 알고리즘은 average of weight method를 사용하였다. 가중퍼지소속함수를 이용하여 심근경색을 정상과 비정상으로 분류(1-nomal, 2-abnormal)하였다. 실험 결과 정확도가 87.66%가 나왔다.

A motion classification and retrieval system in baseball sports video using Convolutional Neural Network model

  • Park, Jun-Young;Kim, Jae-Seung;Woo, Yong-Tae
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권8호
    • /
    • pp.31-37
    • /
    • 2021
  • 본 연구에서는 CNN(Convolution Neural Network) 모델을 이용하여 야구 경기 영상에서 투구나 스윙과 같은 특정 영상이 출현하는 장면을 자동으로 분류하여 효과적으로 검색하는 방법을 제안한다. 또한, 특정 동작의 분류 결과와 경기 기록을 연계한 영상 장면 검색시스템을 제안한다. 제안 시스템의 효율성을 검정하기 위하여 2018년부터 2019년까지 진행된 한국프로야구 경기 영상을 대상으로 특정 장면별로 분류하는 실험을 진행하였다. 야구 경기 영상에서 투구 장면을 분류하는 실험에서는 경기별로 약 90%의 정확도를 보였다. 그리고 경기 영상 내에 포함된 스코어보드를 추출하여 경기 기록과 연계하는 영상 장면 검색 실험에서는 경기별로 약 80% 정도의 정확도를 보였다. 본 연구 결과는 한국프로야구 경기에서 과거 경기 영상을 체계적으로 분석하여 경기력 향상을 위한 전략 수립을 위하여 효과적으로 사용할 수 있으리라 기대한다.

The evaluation of Spectral Vegetation Indices for Classification of Nutritional Deficiency in Rice Using Machine Learning Method

  • Jaekyeong Baek;Wan-Gyu Sang;Dongwon Kwon;Sungyul Chanag;Hyeojin Bak;Ho-young Ban;Jung-Il Cho
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.88-88
    • /
    • 2022
  • Detection of stress responses in crops is important to diagnose crop growth and evaluate yield. Also, the multi-spectral sensor is effectively known to evaluate stress caused by nutrient and moisture in crops or biological agents such as weeds or diseases. Therefore, in this experiment, multispectral images were taken by an unmanned aerial vehicle(UAV) under field condition. The experiment was conducted in the long-term fertilizer field in the National Institute of Crop Science, and experiment area was divided into different status of NPK(Control, N-deficiency, P-deficiency, K-deficiency, Non-fertilizer). Total 11 vegetation indices were created with RGB and NIR reflectance values using python. Variations in nutrient content in plants affect the amount of light reflected or absorbed for each wavelength band. Therefore, the objective of this experiment was to evaluate vegetation indices derived from multispectral reflectance data as input into machine learning algorithm for the classification of nutritional deficiency in rice. RandomForest model was used as a representative ensemble model, and parameters were adjusted through hyperparameter tuning such as RandomSearchCV. As a result, training accuracy was 0.95 and test accuracy was 0.80, and IPCA, NDRE, and EVI were included in the top three indices for feature importance. Also, precision, recall, and f1-score, which are indicators for evaluating the performance of the classification model, showed a distribution of 0.7-0.9 for each class.

  • PDF

비강압력신호를 이용한 수면호흡장애 환자의 수면/각성 분류 (Classification of Sleep/Wakefulness using Nasal Pressure for Patients with Sleep-disordered Breathing)

  • 박종욱;정필수;강규민;이경중
    • 대한의용생체공학회:의공학회지
    • /
    • 제37권4호
    • /
    • pp.127-133
    • /
    • 2016
  • This study proposes the feasibility for automatic classification of sleep/wakefulness using nasal pressure in patients with sleep-disordered breathing (SDB). First, SDB events were detected using the methods developed in our previous studies. In epochs for normal breathing, we extracted the features for classifying sleep/wakefulness based on time-domain, frequency-domain and non-linear analysis. And then, we conducted the independent two-sample t-test and calculated Mahalanobis distance (MD) between the two categories. As a results, $SD_{LEN}$ (MD = 0.84, p < 0.01), $P_{HF}$ (MD = 0.81, p < 0.01), $SD_{AMP}$ (MD = 0.76, p = 0.031) and $MEAN_{AMP}$ (MD = 0.75, p = 0.027) were selected as optimal feature. We classified sleep/wakefulness based on support vector machine (SVM). The classification results showed mean of sensitivity (Sen.), specificity (Spc.) and accuracy (Acc.) of 60.5%, 89.0% and 84.8% respectively. This method showed the possibilities to automatically classify sleep/wakefulness only using nasal pressure.

토지이용 공간변화 예측의 통계학적 모형에 관한 연구 (A Study on Statistical Modeling of Spatial Land-use Change Prediction)

  • 김의홍
    • Spatial Information Research
    • /
    • 제5권2호
    • /
    • pp.177-183
    • /
    • 1997
  • 토지이용 분류 체계상에서의 종류라는 개념은 토지이용 변화의 분류 체계성에 그대로 적용시킬 수가 있다. 본 연구에서는 선형 판별 함수를 원용하는 최우법(Maximum likelihood method)으로 산출되는 토지이용분류의 공간적 결과와 Markov 전이 행렬 방법으로 산출되는 정량적 결과가 상호 보완하는 의미에서 합성모형으로 통합되었다. 본 연구에서는 다변수 판별 함수의 계산법과 Markov 연쇄행렬 계산법에 관하여 토의되고 그 합성 모형을 대상 지역에 실제 적용하여 그 결과 '90년, '95년 토지이용도가 예측 작성되었다. 모형화의 문제 및 예측의 정확도 역시 더욱 토의 되어야 하며 추후 개선의 여지를 남긴다.

  • PDF

A Classification Algorithm Based on Data Clustering and Data Reduction for Intrusion Detection System over Big Data

  • Wang, Qiuhua;Ouyang, Xiaoqin;Zhan, Jiacheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권7호
    • /
    • pp.3714-3732
    • /
    • 2019
  • With the rapid development of network, Intrusion Detection System(IDS) plays a more and more important role in network applications. Many data mining algorithms are used to build IDS. However, due to the advent of big data era, massive data are generated. When dealing with large-scale data sets, most data mining algorithms suffer from a high computational burden which makes IDS much less efficient. To build an efficient IDS over big data, we propose a classification algorithm based on data clustering and data reduction. In the training stage, the training data are divided into clusters with similar size by Mini Batch K-Means algorithm, meanwhile, the center of each cluster is used as its index. Then, we select representative instances for each cluster to perform the task of data reduction and use the clusters that consist of representative instances to build a K-Nearest Neighbor(KNN) detection model. In the detection stage, we sort clusters according to the distances between the test sample and cluster indexes, and obtain k nearest clusters where we find k nearest neighbors. Experimental results show that searching neighbors by cluster indexes reduces the computational complexity significantly, and classification with reduced data of representative instances not only improves the efficiency, but also maintains high accuracy.