• Title/Summary/Keyword: Classical Plate Theory

Search Result 179, Processing Time 0.027 seconds

Computational modeling of coupled fluid-structure systems with applications

  • Kerboua, Y.;Lakis, A.A.;Thomas, M.;Marcouiller, L.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.1
    • /
    • pp.91-111
    • /
    • 2008
  • This paper outlines the development of a computational model in order to analyze the dynamic behaviour of coupled fluid-structure systems such as a) liquid containers, b) a set of parallel or radial plates. In this work a hybrid fluid-solid element is developed, capable of simulating both membrane and bending effects of the plate. The structural mass and stiffness matrices are determined using exact integration of governing equations which are derived using a combination of classical plate theory and a finite element approach. The Bernoulli equation and velocity potential function are used to describe the liquid pressure applied on the solid-fluid element. An impermeability condition assures a permanent contact at the fluid-structure interface. Applications of this model are presented for both parallel and radial plates as well as fluid-filled rectangular reservoir. The effect of physical parameters on the dynamic behaviour of a coupled fluid-structure system is investigated. The results obtained using the presented approach for dynamic characteristics such as natural frequency are in agreement to those calculated using other theories and experiments.

Buckling load optimization of laminated composite stepped columns

  • Topal, Umut
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.107-111
    • /
    • 2017
  • This paper deals with critical buckling load optimization of symmetric angle-ply laminated stepped flat columns under axial compression load. The design objective is the maximization of the critical buckling load and the design variable is the fiber orientations in the layers of the laminates. The classical laminate plate theory is used for the finite element solution of the laminated stepped flat columns. The modified feasible direction (MFD) method is used for the optimization routine. For this purpose, a program based on FORTRAN is exploited. Finally, the optimization results are presented for width ratios (b/B), ratios of fillet radius ($r_1/r_2$), aspect ratios (L/B) and boundary conditions. The results are presented in graphical and tabular forms and the results are compared.

A modified multi-objective elitist-artificial bee colony algorithm for optimization of smart FML panels

  • Ghashochi-Bargha, H.;Sadr, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1209-1224
    • /
    • 2014
  • In Current paper, the voltages of patches optimization are carried out for minimizing the power consumption of piezoelectric patches and maximum vertical displacement of symmetrically FML panels using the modified multi-objective Elitist-Artificial Bee Colony (E-ABC) algorithm. The voltages of patches, panel length/width ratios, ply angles, thickness of metal sheets and edge conditions are chosen as design variables. The classical laminated plate theory (CLPT) is considered to model the transient response of the panel, and numerical results are obtained by the finite element method. The performance of the E-ABC is also compared with the PSO algorithm and shows the good efficiency of the E-ABC algorithm. To check the validity, the transient responses of isotropic and orthotropic panels are compared with those available in the literature and show a good agreement.

Study on the Time Response of Reduced Order Model under Dynamic Load (동하중 하에서 축소 모델의 구성과 전체 시스템 응답과의 비교 연구)

  • 박수현;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.11-18
    • /
    • 2004
  • In this paper, an efficient model reduction scheme is presented for large scale dynamic systems. The method is founded on a modal analysis in which optimal eigenvalue is extracted from time samples of the given system response. The techniques we discuss are based on classical theory such as the Karhunen-Loeve expansion. Only recently has it been applied to structural dynamics problems. It consists in obtaining a set of orthogonal eigenfunctions where the dynamics is to be projected. Practically, one constructs a spatial autocorrelation tensor and then performs its spectral decomposition. The resulting eigenfunctions will provide the required proper orthogonal modes(POMs) or empirical eigenmodes and the correspondent empirical eigenvalues (or proper orthogonal values, POVs) represent the mean energy contained in that projection. The purpose of this paper is to compare the reduced order model using Karhunen-Loeve expansion with the full model analysis. A cantilever beam and a simply supported plate subjected to sinusoidal force demonstrated the validity and efficiency of the reduced order technique by K-L method.

  • PDF

Vibration Control of Plates Using Resonant Shunted Piezoelectric Material (공진분기회로를 이용한 평판의 진동제어)

  • Kim, Young-Ho;Park, Chul-Hue;Park, Hyun-Chul
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.881-886
    • /
    • 2003
  • Vibration control of plates with a passive electrical damper is presented in this paper. This electrical absorber, piezoelectric patches connected with a resistor and an inductor in series, is analogous to the damped mechanical vibration absorber. For estimating the effectiveness of piezoelectric absorber, the governing equations of motion are derived using a classical laminate plate theory and Hamilton principle. The developed theoretical analyses are validated experimentally for simply-supported aluminum plates in order to demonstrate the performance of passive electrical damper. The result shows that the vibration amplitude is reduced about 14dB for the targeted first vibration mode.

  • PDF

Buckling of symmetrically laminated quasi-isotropic thin rectangular plates

  • Altunsaray, Erkin;Bayer, Ismail
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.305-320
    • /
    • 2014
  • The lowest critical value of the compressive force acting in the plane of symmetrically laminated quasi-isotropic thin rectangular plates is investigated. The critical buckling loads of plates with different types of lamination and aspect ratios are parametrically calculated. Finite Differences Method (FDM) and Galerkin Method are used to solve the governing differential equation for Classical Laminated Plate Theory (CLPT). The results calculated are compared with those obtained by the software ANSYS employing Finite Elements Method (FEM). The results of Galerkin Method (GM) are closer to FEM results than those of FDM. In this study, the primary aim is to conduct a parametrical performance analysis of proper plates that is typically conducted at preliminary structural design stage of composite vessels. Non-dimensional values of critical buckling loads are also provided for practical use for designers.

Vibration Analysis of [αββγααβ]r Type Laminated Composite Plates Using Invariant and Correction Factor (불변량(不變量)과 수정계수(修正係數)를 사용(使用)한 [αββγααβ]r 적층부합판(積層復合板)의 진동해석(振動解析))

  • Hong, Chang-Woo;Sim, Do-Sik;Kim, Nam-Yun;Jung, Young-Hwa
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.131-137
    • /
    • 1996
  • For a large scale civil and architectural structures, mainly steel, concrete and aluminum have been used and weight and corrosion of materials became a major concern. Designing with composite materials is very much complicated. Simple classical theory may yield good results for selecting "initial" sections for preliminary design. D. H. Kim proposed to use the quasi-isotropic constants by Tsai for the preliminary design of the composite primary structures for the civil construction. Also he made simple equation using correction factor. In this paper, the simple formulas developed by D. H. Kim to obtain "exact" values of the natural frequencies of [ABBCAAB]r laminate are compared with Whitney's equations. Also natural frequencies of the plate with varying aspect ratios and reinforcing fiber orientations, are compared with natural frequencies of bean. This work can be a guideline to obtain data in many other cases.

  • PDF

Post-buckling of cylindrical shells with spiral stiffeners under elastic foundation

  • Shaterzadeh, Alireza;Foroutan, Kamran
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.615-631
    • /
    • 2016
  • In this paper, an analytical method for the Post-buckling response of cylindrical shells with spiral stiffeners surrounded by an elastic medium subjected to external pressure is presented. The proposed model is based on two parameters elastic foundation Winkler and Pasternak. The material properties of the shell and stiffeners are assumed to be continuously graded in the thickness direction. According to the Von Karman nonlinear equations and the classical plate theory of shells, strain-displacement relations are obtained. The smeared stiffeners technique and Galerkin method is used to solve the nonlinear problem. To valid the formulations, comparisons are made with the available solutions for nonlinear static buckling of stiffened homogeneous and un-stiffened FGM cylindrical shells. The obtained results show the elastic foundation Winkler on the response of buckling is more effective than the elastic foundation Pasternak. Also the ceramic shells buckling strength higher than the metal shells and minimum critical buckling load is occurred, when both of the stiffeners have angle of thirty degrees.

Combination resonances of imperfect SSFG cylindrical shells rested on viscoelastic foundations

  • Foroutan, Kamran;Ahmadi, Habib
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.87-100
    • /
    • 2020
  • The present paper investigates the combination resonance behavior of imperfect spiral stiffened functionally graded (SSFG) cylindrical shells with internal and external functionally graded stiffeners under two-term large amplitude excitations. The structure is embedded within a generalized nonlinear viscoelastic foundation, which is composed of a two-parameter Winkler-Pasternak foundation augmented by a Kelvin-Voigt viscoelastic model with a nonlinear cubic stiffness, to account for the vibration hardening/softening phenomena and damping considerations. With regard to classical plate theory of shells, von-Kármán equation and Hook law, the relations of stress-strain are derived for shell and stiffeners. The spiral stiffeners of the cylindrical shell are modeled according to the smeared stiffener technique. According to the Galerkin method, the discretized motion equation is obtained. The combination resonance is obtained by using the multiple scales method. Finally, the influences of the stiffeners angles, foundation type, the nonlinear elastic foundation coefficients, material distribution, and excitation amplitude on the system resonances are investigated comprehensively.

Planar Optical Waveguide Temperature Sensor Based on Etched Bragg Gratings Considering Nonlinear Thermo-optic Effect

  • Ahn, Kook-Chan;Lee, Sang-Mae;Jim S. Sirkis
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.309-319
    • /
    • 2001
  • This paper demonstrates the development of optical temperature sensor based on the etched silica-based planar waveguide Bragg grating. Topics include design and fabrication of the etched planar waveguide Bragg grating optical temperature sensor. The typical bandwidth and reflectivity of the surface etched grating has been ∼0.2nm and ∼9%, respectively, at a wavelength of ∼1552nm. The temperature-induced wavelength change is found to be slightly non-linear over ∼200$^{\circ}C$ temperature range. Typically, the temperature-induced fractional Bragg wavelength shift measured in this experiment is 0.0132nm/$^{\circ}C$ with linear curve fit. Theoretical models with nonlinear temperature effect for the grating response based on waveguide and plate deformation theories agree with experiments to within acceptable tolerance.

  • PDF