• Title/Summary/Keyword: Class V cavity preparation

Search Result 12, Processing Time 0.017 seconds

Evaluation of marginal leakage of bulk fill flowable composite resin filling with different curing time using micro-computed tomography technology (Bulk fill 유동성 복합레진의 변연 누출에서 다른 중합시간의 영향에 대해 마이크로시티를 이용한 평가)

  • Kim, Eun-Ji;Lee, Kyu-Bok;Jin, Myoung-Uk
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.3
    • /
    • pp.184-193
    • /
    • 2016
  • Purpose: To evaluate marginal leakage of bulk fill flowable composite resin filling with different curing time by using microcomputed tomography technology. Materials and Methods: 30 previously extracted human molars were randomly divided into 6 groups based upon restorative system and different curing time. Class II cavities (vertical slot cavities) were prepared. An individual metallic matrix was used to build up the proximal wall. The SonicFill or SureFil SDR flow was inserted into the preparation by using 1 bulk increment, followed by light polymerization for different curing times. The different exposure times were 20, 40, and 60 seconds. All specimens were submitted to 5,000 thermal cycles for artificial aging. Micro-CT scanning was performed by using SkyScan 1272. One evaluator assessed microleakage of silver nitrated solution at the resin-dentin interface. The 3D image of each leakage around the restoration was reconstructed with CT-Analyser V.1.14.4. The leakage was analyzed with the Mann-Whitney test. Results: Significant differences were observed between the light curing times, but no significant differences were found between the bulk fill composite resins. Increasing in the photoactivation time resulted in greater microleakage in all the experimental groups. Those subjected to 60 seconds of light curing showed higher microleakage means than those exposed for 20 seconds and 40 seconds. Conclusion: Increasing the photoactivation time is factor that may increase marginal microlekage of the bulk fill composite resins. Further, micro-CT can nondestructively detect leakage around the resin composite restoration in three dimensions.

REMINERALIZATION EFFECT OF FUJI VII GLASS IONOMER CEMENT (Fuji VII 글래스 아이오노머 시멘트의 재광화 효과)

  • Kim, Young-Jin;Lee, Ju-Hyun;Seo, Hyun-Woo;Park, Ho-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.4
    • /
    • pp.653-660
    • /
    • 2006
  • Fuji VII is a glass-ionomer cement specially targeted for early protection in erupting first and second molars. Properties of Fuji VII such as very high level of fluoride release, low viscosity and no need to preliminarily etch the substrate would be useful to erupting molars with primary pit and fissure caries or hypoplastic area for preventive goal or remineralization. The purpose of this study were to evaluate remineralization of Fuji VII glass ionomer cement and to compare with one of other restorative materials such as conventional glass ionomer cement, resin-modified glass ionomer cement, compomer and composite resin. Forty-two extracted human molars were used for this study. All teeth were immersed in demineralizing solution for 48 hours after Class V cavity preparation was made on sound proximal surface. The teeth were randomly divided into six groups and restored with Fuji VII, Fuji II, Fuji II LC improved, F2000, $Filtek^{TM}$ Z250 and control group was unrestored. The middle area with $130{\pm}20{\mu}m$ thickness was separated from specimen using microtome and demineralized area was photographed under polarized microscope. Separated area was relocated to specimen and stored in artificial saliva, After four weeks, changes of demineralized area were observed and compared to them restorated immediately. The results from the this study can be summarized as follows ; 1. Fuji VII, Fuji II, Fuji II LC improved have more prominent remineralization effect than F2000, $Filtek^{TM}$ Z250, control group. 2. No significant differences in remineralization effect are seen between Fuji VII and Fuji II, Fuji II LC improved.

  • PDF