• Title/Summary/Keyword: Clamping pad

Search Result 14, Processing Time 0.03 seconds

The Effect of Clamping Angle of a Locker on the Clamping Force of the Wedge Type Rail Clamp (Locker 의 물림각이 쐐기형 레일클램프의 압착력에 미치는 영향 평가)

  • Han D.S.;Lee S.W.;Han G.J.;Ahn C.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.1042-1045
    • /
    • 2005
  • The wedge type rail clamp has the operating mechanism: First, the jaw pad clamps a rail with small clamping force. Next as the wind speed increases, the clamping force of the Jaw pad Is Increased by the wedge. The initial clamping force of a jaw pad was determined by the clamping angle of a locker. In this study, we carried out the finite element analysis to evaluate the relationship between the clamping angle of a locker and the clamping force of a jaw pad with respect to the design wind speed, such as 2, 4, 6, 8, and 10m/s, we adopted the wedge type rail clamp fur 50tons class container crane with the wedge angle of $10^{\circ}$.

  • PDF

A Experimental Analysis on the Relationship between the Angle of a Locker and the Clamping Force of Wedge Type Rail Clamp (Locker의 물림각과 쐐기형 레일클램프의 압착력에 관한 실험적 고찰)

  • Han Dong-Seop;Shim Jae- Joon;Han Geun- Jo;Lee Kwon-Hee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.247-252
    • /
    • 2005
  • The wedge type rail clamp has the operating mechanism: First, the jaw pad clamps a rail with small clamping force Next as the wind speed increases, the clamping force of the jaw pad is increased by the wedge. In order to design the wedge type rail clamp, we need to determine the proper wedge angle to minimize the sliding distance of a roller and the proper clamping angle of a locker to generate the initial clamping force of a jaw pad. The researches for the proper wedge angle have conducted, and in this study we conducted the investigation to determine the proper clamping angle of a locker in the rail clamp with wedge angle of $10^{\circ}$. Because the initial damping force of the jaw pad was determined by the clamping angle of the locker, in order to carry out the clamping force of a jaw pad, we measured the locking force applied to a locker with respect to the clamping angle of a locker, such as $3^{\circ},\;4^{\circ},\;5^{\circ},\;6^{\circ},\;$ using a pressure gauge, and compared the results with the FEA results.

  • PDF

Effects of Design Parameters on the Frictional Coefficient of Clamping Pads for Self-Climbing Crane systems (자력 승강식 크레인의 클램핑 패드 마찰계수에 미치는 설계변수 영향)

  • Sang-Hyun Park;Su-Min Lee;Youngjae Yu;Sang-Rai Cho
    • Journal of Wind Energy
    • /
    • v.14 no.4
    • /
    • pp.13-20
    • /
    • 2023
  • A self-climbing crane (SCC) system is under development for the installation and maintenance of wind turbines. It can move vertically along the wind turbine tower by itself. One of the key components of the SCC system is the clamping pad to maintain a safe position on the wind turbine tower. The SCC system can maintain its position on the tower from the frictional force generated between the surfaces of the clamping pads and the tower. If the frictional force provided by the clamping pads are insufficient, the SCC system cannot stay in the vertical position on the tower. Therefore, the development of clamping pads with sufficient frictional force is very important for the SCC system. At the same time, the operation of the SCC system should not damage the paint coating of the wind turbine tower. In order to verify that the frictional force is sufficient and that frictional and compressive forces do not cause damage to the paint, a number of combined compression and shear loading tests were conducted using a test device prepared for this study. The details regarding the test specimens, test procedure, and test results are summarized in this paper.

Creative Design of the Wedge Type Rail Clamp to set the Initial Clamping Force (초기압착력 설정을 위한 쐐기형 레일클램프의 창의적 설계)

  • Han, Dong-Seop;Kim, Yong;Lee, Seong-Wook;Han, Geun-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.58-64
    • /
    • 2007
  • The clamping force of a jaw pad is determined by the displacements of main part when two lockers are locked, after the clamping angle of a locker was set up in the wedge type rail clamp for a container crane. In this time, if the resistance of wedge frame generates due to several factors, the clamping angle of a locker to display the initial clamping force will be changed because of the reduction of displacement of extension bar. This resistance is determined by the eccentric distance between the roller and the wedge, and by the gap between the wedge frame and outer frame. In this study we measured the tensile force of both extension bar through the performance test of the prototype rail clamp in order to evaluate the effect of the resistance of wedge frame on the clamping force of the wedge type rail clamp.

  • PDF

A Study on the Transmitted Torque of Self Clamping Friction Clutch (자기 체결 마찰 클러치의 전달 토크에 관한 연구)

  • Wang, Jee-Seok;Kim, Jong-Do;Yoon, Hee-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1149-1156
    • /
    • 2008
  • The principle of self clamping friction clutch is presented in this paper and the transmitted torque capacity is also calculated. In order to enlarge the friction force, a part of rotating force of driving side is converted to normal force of friction materials by clamping arm. The increased normal force of friction materials assures the large friction force and the transmitted torque capacity of clutch becomes large. The self clamping friction clutch is adopted in the tube type air pressure clutch and the condition of stability is investigated. It is proven that the inclined angle of clamping arm and the friction factor of friction materials are the essential elements in stability and torque capacity of self clamping friction clutch. The transmitted torque capacity of self clamping friction clutch is compared with air pressure clutch. The normal force of friction lining is magnified by 1/(1-k) and the transmitted torque capacity is also magnified with same proportion comparing with air pressure clutch. The larger the friction factor of friction lining, the larger the magnification factor. The longer the clamping arm, the smaller the magnification factor. It must be also noted that the value of k=${\mu}Y/X$ is the criterion of stability. If the value of k=${\mu}Y/X$ is greater than or equal to 1, the self clamping friction clutch is unstable and it can not be used as clutch.

A Brake Pad Wear Compensation Method and Performance Evaluation for ElectroMechanical Brake (전기기계식 제동장치의 제동패드 마모보상방법 및 성능평가)

  • Baek, Seung-Koo;Oh, Hyuck-Keun;Park, Choon-Soo;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.581-588
    • /
    • 2020
  • This study examined a brake pad wear compensation method for an Electro-Mechanical Brake (EMB) using the braking test device. A three-phase Interior Permanent Magnet Synchronous Motor (IPMSM) was applied to drive the actuator of an EMB. Current control, speed control, and position control were used to control the clamping force of the EMB. The wear compensation method was performed using a software algorithm that updates the motor model equation by comparing the motor output torque current with a reference current. In addition, a simple first-order motor model equation was applied to estimate the output clamping force. The operation time to the maximum clamping force increased within 0.1 seconds compared to the brake pad in its initial condition. The experiment verified that the reference operating time was within 0.5 seconds, and the maximum value of the clamping force was satisfied under the wear condition. The wear compensation method based on the software algorithm in this paper can be performed in the pre-departure test of rolling stock.

Study for weight of wedge type rail clamp according to initial clamping force (레일클램프의 원활한 클램핑과 초기체결력 발휘를 위한 중추무게의 관계에 관한 연구)

  • Han, Geun-Jo;An, Chan-Woo;Kim, Tae-Hyung;Sim, Jae-Jun;Han, Dong-Sub;Lee, Ho;Jeon, Young-Hwan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1517-1520
    • /
    • 2003
  • In this paper, we design a wedge type rail-clamp which can protect container crane from wind with constant clamping force regardless of the operating period. When we design wedge type rail clamp, it is important to determine the weight for locker to descent smoothly with an initial clamping force of rail and pad. Therefor, this paper suggest a process to decide a wright within proper range which could be obtained using FEA of wedge type rail clamp.

  • PDF

The Effect of the Resistance of Wedge Frame on the Clamping Force of the Rail Clamp (쐐기프레임의 저항력이 레일클램프의 압착력에 미치는 영향)

  • Han Dong-Seop;Shim Jae-Joon;Lee Kwon-Hee;Han Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.355-360
    • /
    • 2006
  • The damping force of a jaw pad is determined by the displacements of main part when two lockers are locked, after the damping angle of a locker was set up in the wedge type rail damp for a container crane. In this time, of the resistance of wedge frame generates due to several factors, the damping angle of a locker to display the initial clamping force will be changed because of the reduction of displacement of extension bar. This resistance is determined by the eccentric distance between the roller and the wedge, and by the gap between the wedge frame and outer frame. In this study we measured the tensile force of both extension bar through the performance test of the prototype rail damp in order to evaluate the effect of the resistance of wedge frame on the damping force of the wedge type rail clamp.

  • PDF

A Study on the Sliding Distance and the Proper Position of Supporter with respect to the Wedge Angle in the Wedge Type Rail Clamp

  • Han, Dong-Seop;Han, Geun-Jo;Lee, Seong-Wook
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.115-120
    • /
    • 2006
  • The rail clamp is the device to prevent the crane slips along rails from the wind blast as well as to locate a container crane in the set position in operating mode. In this study we conduct the research for the sliding distance of rail clamp and the proper position of supporter with respect to the wedge angle in the wedge type rail clamp. The sliding distance to display the clamping force of the jaw pad corresponding to the design wind speed criteria is determined by the total displacement of the rail clamp at the roller center and the wedge angle. And the supporter is the device to prevent the overload which is applied on each part of the rail clamp by wind speed increment, because a clamping force is generated by the sliding of the wedge due to the wind. Accordingly the position of the supporter to prevent the overload is determined by analyzing the forces applied to the rail clamp. In order to analyze the sliding distance and the proper position of supporter with respect to the wedge angle as the wind speed is 40m/s, 5-kinds of wedge angles, such as 2, 4, 6, 8, $10^{\circ}$, were adopted as the design parameter.

  • PDF

Measuring methods for friction coefficient of disc-pad through running test (실차 주행시험을 통한 디스크-패드 마찰계수 측정방법)

  • Mok, Jin-Yong;Kim, Young-Guk;Kim, Seog-Won;Park, Chan-Kyoung;Kim, Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.996-1001
    • /
    • 2008
  • To stop the train safely within the limited traveling distance and reduce its speed to the desired speed, it is necessary to guarantee the correct braking force. Presently, most trains have electric propulsion system and have adopted combined electrical and mechanical(friction) braking system. The friction coefficient between brake disc and pad is an important parameter in determining the mechanical braking force. In general, friction coefficient data of braking material have been taken through the dynamo-test in a laboratory. This study have suggested two methodologies that can measure friction coefficient of braking material on the train's actual operating condition. The first is the direct method; measure the brake force and the clamping force applied on the mechanical brake by using strain gauges installed at the brake disk, and then calculate it. The second method is the indirect method; obtain the friction coefficient by using the train load and the equivalent brake force which is deducted the longitudinal force, such as resistance to motion, gradient resistance and curved resistance, from the inertia force applied to the train.

  • PDF