• Title/Summary/Keyword: Clamped Support

Search Result 26, Processing Time 0.024 seconds

Free vibration analysis of axially moving beam under non-ideal conditions

  • Bagdatli, Suleyman M.;Uslu, Bilal
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.597-605
    • /
    • 2015
  • In this study, linear vibrations of an axially moving beam under non-ideal support conditions have been investigated. The main difference of this study from the other studies; the non-ideal clamped support allow minimal rotations and non-ideal simple support carry moment in minimal orders. Axially moving Euler-Bernoulli beam has simple and clamped support conditions that are discussed as combination of ideal and non-ideal boundary with weighting factor (k). Equations of the motion and boundary conditions have been obtained using Hamilton's Principle. Method of Multiple Scales, a perturbation technique, has been employed for solving the linear equations of motion. Linear equations of motion are solved and effects of different parameters on natural frequencies are investigated.

Analytical vibration of FG cylindrical shell with ring support based on various configurations

  • Hussain, Muzamal;Selmi, Abdellatif
    • Advances in concrete construction
    • /
    • v.9 no.6
    • /
    • pp.557-568
    • /
    • 2020
  • In this study, the impact of ring supports around the shell circumferential has been examined for their various positions along the shell axial length using Rayleigh-Ritz formulation. These shells are stiffened by rings in the tangential direction. For isotropic materials, the physical properties are same everywhere where the laminated and functionally graded materials, they vary from point to point. Here the shell material has been taken as functionally graded material. The influence of the ring supports is investigated at various positions. These variations have been plotted against the locations of ring supports for three values of length-to-diameter ratios. Effect of ring supports with middle layer thickness is presented using the Rayleigh-Ritz procedure with three different conditions. The influence of the positions of ring supports for clamped-clamped is more visible than simply supported and clamped-free end conditions. The frequency first increases and gain maximum value in the midway of the shell length and then lowers down. The Lagrangian functional is created by adding the energy expressions for the shell and rings. The axial modal deformations are approximated by making use of the beam functions. The comparisons of frequencies have been made for efficiency and robustness for the present numerical procedure. Throughout the computation, it is observed that the frequency behavior for the boundary conditions follow as; clamped-clamped, simply supported-simply supported frequency curves are higher than that of clamped-simply curves. To generate the fundamental natural frequencies and for better accuracy and effectiveness, the computer software MATLAB is used.

Flexural and axial vibration analysis of beams with different support conditions using artificial neural networks

  • Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • v.18 no.3
    • /
    • pp.303-314
    • /
    • 2004
  • An artificial neural network (ANN) application is presented for flexural and axial vibration analysis of elastic beams with various support conditions. The first three natural frequencies of beams are obtained using multi layer neural network based back-propagation error learning algorithm. The natural frequencies of beams are calculated for six different boundary conditions via direct solution of governing differential equations of beams and Rayleigh's approximate method. The training of the network has been made using these data only flexural vibration case. The trained neural network, however, had been tested for cantilever beam (C-F), and both end free (F-F) in case the axial vibration, and clamped-clamped (C-C), and Guided-Pinned (G-P) support condition in case the flexural vibrations which were not included in the training set. The results found by using artificial neural network are sufficiently close to the theoretical results. It has been demonstrated that the artificial neural network approach applied in this study is highly successful for the purposes of free vibration analysis of elastic beams.

A Study on the Free Vibration of a Square Plate with Various Hole Position (사각평판에서 홀의 위치에 따른 자유진동에 관한 연구)

  • 김현수;안찬우;최경호;김동영;김형준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.132-139
    • /
    • 2003
  • In this study, it is attempted to obtain the optimum size of holes in 15 square plate models where a hole exists on every quadrant of a plate, and to get eigenvalues by performing free vibration analysis for each model. Moreover, the specimen is produced from optimized square plate and eigenvalue of each plate is measured through the shocking load. And then the result is compared with that of finite element analysis. For free vibration analysis of the square plate, the boundary condition of finite element analysis and experiment is assumed as both ends clamped support. From the results of this study, it is known that more stable structures can be designed by changing the natural frequency which is dependent on the location of holes and further studies are considered to be necessary fur the basic design information.

Vibration of SWCNTs: Consistency and behavior of polynomial law index with Galerkin's model

  • Khadimallah, Mohamed A.;Hussain, Muzamal;Khedher, Khaled Mohamed;Bouzgarrou, Souhail Mohamed;Al Naim, Abdullah F.;Naeem, Muhammad Nawaz;Taj, Muhammad;Iqbal, Zafar;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.9 no.4
    • /
    • pp.251-261
    • /
    • 2020
  • In this article, vibration attributes of single walled carbon nanotubes based on Galerkin's method have been investigated. The influence of power law index subjected to different end supports has been overtly examined. Application of the Hamilton's variational principal leads to the formation of partial differential equations. The effects of different physical and material parameters on the fundamental frequencies are investigated for armchair and zigzag carbon nanotubes with clamped-clamped, simply supported and clamped-free boundary conditions. By using volume fraction for power law index, the fundamental natural frequency spectra for two forms of Single-Walled Carbon Nanotubes (SWCNTs) are calculated. The influence of frequencies against length-to-diameter ratios with varying power law index are investigated in detail for these tubes. MATLAB software package has been utilized for extracting tube frequency spectra. The obtained results are confirmed by comparing with available literature.

″A Study on the Stress and Wave Propagation in Transversely Impacted Composite Laminates″

  • Ahn, Kook-Chan;Kim, Nam-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.1
    • /
    • pp.39-45
    • /
    • 1992
  • The impulsive stress and wave propagation of a glass/epoxy laminate subjected to the transverse low-velocity impact of a steel ball are investigated theoretically and experimentally. A plate finite element model based on Whitney and Pagano's theory In consunchon with experimental contact laws is used for the theoretical investigation. The specimens fo, statical indentation and impact test we composed of [0/45/0/-45/0]$_{2s}$ and [90/45/90/-45/90]$_{2s}$ stacking sequences and have clamped-simply supported boundary conditions. Finally, these two results are compared and then the impulsive stress and wave propagation characteristics of this laminated composite are studied.ied.

  • PDF

A High power and Precision Ultrasonic Linear Motor with Multi-support Mechanism (다점 지지 고출력 고정도 초음파 모터)

  • Lee S.K.;Yun C.H.;Lee J.Y.;Cha H.R.;Kim W.K.;Kang J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.151-152
    • /
    • 2006
  • Nowadays, great attention has been shown to the question of ultrasonic linear motor for accomplishing the high positioning accuracy and high driving force in the semiconductor and optical industry. Ultrasonic linear motors have many advantages such as simple structure, quick response, ability to maintain position without energy consumption, and electromagnetic effect. And BLT has attracted attention to accomplish large vibration amplitude and large mechanical force. Authors designed and developed the new type of ultra sonic linear motor with multi support mechanism, achieved 75N of output force and 0.45m/s of velocity.

  • PDF

Free Vibration Analysis of a Core Support Barrel by Experimental and Analysis Methods (실험 및 해석을 통한 노심지지 원통쉘의 자유진동해석)

  • 김월태;정명조;송선호;이영신
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.217-222
    • /
    • 1997
  • Free vibration analysis of a Core Support Barrel shell structure is studied through experimental and finite element analysis methods. The structure is considered to be a thick shell with the ratio of thickness to radius 3/10. Finite element model is established by solid model with brick elements. Modal analyses are performed with respect to the various ratios of thickness to radius with clamped-free and free-free boundary conditions. Experimental test is done to find out how well the results are agreed with those of analysis. The comparison of the results from experiment and analysis shows a good agreement between them in general.

  • PDF

Elastoplastic nonlinear behavior of planar steel gabled frame

  • Moghaddam, Sina Heyrani;Masoodi, Amir R.
    • Advances in Computational Design
    • /
    • v.4 no.4
    • /
    • pp.397-413
    • /
    • 2019
  • In this paper, static nonlinear analysis of gable frame is performed using OpenSees software. Both geometric and material nonlinearities are considered in analyses. To consider large displacements, co-rotational coordinate transformation is used in software. The effects of symmetric and asymmetric support conditions including clamped and simple supports are studied. On the other hand, the material nonlinearity is reflected on analyses using Giuffre-Menegotto-Pinto steel material. Note that strain hardening characteristics are also considered in this model. Moreover, I-shaped cross-section is assumed for all members. The results are provided for different geometry properties of gable frame including shallow and deep inclined roof. It should be added that buckling and post-buckling behaviors of gable frame are investigated using related equilibrium paths. A comparison study is also implemented on the responses of buckling loads obtained for different support and geometry conditions. To trace snap-through paths completely, a displacement control method entitled arc-length is utilized. Findings show the capability of proposed model in nonlinear analysis of gable frames.

Effects of the location and size of web openings on shear behavior of clamped-clamped reinforced concrete beams

  • Ceyhun Aksoylu;Yasin Onuralp Ozkilic;Ibrahim Y. Hakeem;Ilker Kalkan
    • Computers and Concrete
    • /
    • v.33 no.3
    • /
    • pp.251-264
    • /
    • 2024
  • The present study pertains to the effects of variations in the location and size of drilled web openings on the behavior of fixed-fixed reinforced concrete (RC) beams. For this purpose, a reference bending beam with a transverse opening in each half span was tested to failure. Later, the same beam was modeled and analyzed with the help of finite element software using ABAQUS. Upon achieving close agreement between the experimental and numerical results, the location and size of the web opening were altered to uncover the effects of these factors on the shear strength and load-deflection behavior of RC beams. The experimental failure mode of the tested beam and the numerical results were also verified by theoretical calculations. In numerical analysis, when compared to the reference (D0) specimen, if the distance of the opening center from the support is 0 or h or 2h, reduction in load-bearing capacity of 1.5%-22.8% or 2.0%-11.3% or is 4.1%-40.7%. In other words, both the numerical analyses and theoretical calculations indicated that the beam behavior shifted from shear-controlled to flexure-controlled as the openings approached the supports. Furthermore, the deformation capacities, energy absorption values, and the ductilities of the beams with different opening diameters also increased with the decreasing distance of the opening from supports. Web compression failure was shown to be the predominant mode of failure of beams with large diameters due to the lack of sufficient material in the diagonal compression strut of the beam. The present study indicated that transverse openings with diameters, not exceeding about 1/3 of the entire beam depth, do not cause the premature shear failure of RC beams. Finally, shear damage should be prevented by placing special reinforcements in the areas where such gaps are opened.