• 제목/요약/키워드: Cladding material

검색결과 167건 처리시간 0.038초

A Study on Dielectric Properties of Printed Circuit Board(PCB) Materials in the Frequency Range of 100MHz to 1Ghz

  • Kim, Jong-Heon;C. Venkataseshaiah;Lee, Joon-Ung
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권5호
    • /
    • pp.40-44
    • /
    • 1997
  • This paper presents the results of studies made for measuring the relative complex permittivity of PCB sheet material in he frequency a range of 100MHz∼1GHz using vector network analyzer. A measurement cell was developed for this purpose using broad-band impedance method and the dielectric constant and loss tangent of two PCBV sheet materials, glass-epoxy and teflon, were measured. The effect of copper cladding was studied.

  • PDF

오버레이 용접에 있어서 용접재료에 따른 최신 연구동향 (Recent Study in Variation of Welding Materials for Overlay Welding)

  • 유호천
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.17-26
    • /
    • 2013
  • Recent developing tendency of overlay welding on welding materials are studied by searching of NDSL, Science Direct, KIPRIS and so on. Fe, Co, Ni and WC are selected as welding materials. Development and improvement of various new overlay welding technology, especially improvement of quality and formation of crack are introduced. Also the prospective technologies of overlay welding are anticipated.

High-temperature oxidation behaviors of ZrSi2 and its coating on the surface of Zircaloy-4 tube by laser 3D printing

  • Kim, Jae Joon;Kim, Hyun Gil;Ryu, Ho Jin
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.2054-2063
    • /
    • 2020
  • The high-temperature oxidation behavior of ZrSi2 used as a coating material for nuclear fuel cladding was investigated for developing accident-tolerant fuel cladding of light water reactors. Bulk ZrSi2 samples were prepared by spark plasma sintering. In situ X-ray diffraction was conducted in air at 900, 1000, and 1100 ℃ for 20 h. The microstructures of the samples before and after oxidation were examined by scanning electron microscopy and transmission electron microscopy. The results showed that the oxide layer of zirconium silicide exhibited a layer-by-layer structure of crystalline ZrO2 and amorphous SiO2, and the high-temperature oxidation resistance was superior to that of Zircaloy-4 owing to the SiO2 layer formed. ZrSi2 was coated on the Zircaloy-4 tube surface using laser 3D printing, and the coated tube was oxidized for 2000 s at 1200 ℃ under a vapor/argon mixture atmosphere. The outer surface of the coated tube was hardly oxidized (10-30 ㎛), while the inner surface of the uncoated tube was significantly oxidized to approximately 300 ㎛.

금속분말의 레이저 공정 기술 (Laser Processing Technology using Metal Powders)

  • 장정환;문영훈
    • 대한금속재료학회지
    • /
    • 제50권3호
    • /
    • pp.191-200
    • /
    • 2012
  • The purpose of this paper is to review the state of laser processing technology using metal powders. In recent years, a series of research and development efforts have been undertaken worldwide to develop laser processing technologies to fabricate metal-based parts. Layered manufacturing by the laser melting process is gaining ground for use in manufacturing rapid prototypes (RP), tools (RT) and functional end products. Selective laser sintering / melting (SLS/SLM) is one of the most rapidly growing rapid prototyping techniques. This is mainly due to the processes's suitability for almost any materials, including polymers, metals, ceramics and many types of composites. The interaction between the laser beam and the powder material used in the laser melting process is one of the dominant phenomena defining feasibility and quality. In the case of SLS, the powder is not fully melted during laser scanning, therefore the SLS-processed parts are not fully dense and have relatively low strength. To overcome this disadvantage, SLM and laser cladding (LC) processes have been used to enable full melting of the powder. Further studies on the laser processing technology will be continued due to the many potential applications that the technology offers.

Parametric study on the structural response of a high burnup spent nuclear fuel rod under drop impact considering post-irradiated fuel conditions

  • Almomani, Belal;Kim, Seyeon;Jang, Dongchan;Lee, Sanghoon
    • Nuclear Engineering and Technology
    • /
    • 제52권5호
    • /
    • pp.1079-1092
    • /
    • 2020
  • A parametric study of several parameters relevant to design safety on the spent nuclear fuel (SNF) rod response under a drop accident is presented. In the view of the complexity of interactions between the independent safety-related parameters, a factorial design of experiment is employed as an efficient method to investigate the main effects and the interactions between them. A detailed single full-length fuel rod is used with consideration of post-irradiated fuel conditions under horizontal and vertical free-drops onto an unyielding surface using finite-element analysis. Critical drop heights and critical g-loads that yield the threshold plastic strain in the cladding are numerically estimated to evaluate the fuel rod structural resistance to impact load. The combinatory effects of four uncertain parameters (pellet-cladding interfacial bonding, material properties, spacer grid stiffness, rod internal pressure) and the interactions between them on the fuel rod response are investigated. The principal finding of this research showed that the effects of above-mentioned parameters on the load-carrying capacity of fuel rod are significantly different. This study could help to prioritize the importance of data in managing and studying the structural integrity of the SNF.

Upward Flame Spread for Fire Risk Classification of High-Rise Buildings

  • McLaggan, Martyn S.;Gupta, Vinny;Hidalgo, Juan P.;Torero, Jose L.
    • 국제초고층학회논문집
    • /
    • 제10권4호
    • /
    • pp.299-310
    • /
    • 2021
  • External fire spread has the potential to breach vertical compartmentation and violate the fire safety strategy of a building. The traditional design solution to this has been the use of non-combustible materials and spandrel panels but recent audits show that combustible materials are widespread and included in highly complex systems. Furthermore, most jurisdictions no longer require detailing of spandrel panels under many different circumstances. These buildings require rapid investigation using rational scientific methods to be able to adequately classify the fire risk. In this work, we use an extensive experimental campaign of material-scale data to explore the critical parameters driving upward flame spread. Two criteria are outlined using two different approaches. The first evaluates the time to ignition and the time to burnout to assess the ability for a fire to spread, and can be easily determined using traditional means. The second evaluates the preheated flame length as the critical parameter driving flame spread. A wide range of cladding materials are ranked according to these criteria to show their potential propensity to flame spread. From this, designers can use conservative approaches to perform fire risk assessments for buildings with combustible materials or can be used to aid decision-making. Precise estimates of flame spread rates within complex façade systems are not achievable with the current level of knowledge and will require a substantial amount of work to make progress.

지르칼로이-4 피복재의 요드응력 부식 균열에 대한 연구 (A Study on the Iodine-induced Stress Corrosion Cracking of Zircaloy-4 Cladding (I))

  • 류우석;홍순익;최용;강영환;임창생
    • Nuclear Engineering and Technology
    • /
    • 제17권3호
    • /
    • pp.193-199
    • /
    • 1985
  • 지르칼로이-4 피복재의 요드에 의한 응력부식 균열 현상을 개량된 내부가압방법으로 조사하였다. 요드 응력부식 균열 현상을 일으키는 임계요드농도와 임계 응력이 존재하였으며, 603$^{\circ}$K의 시험 온도에서 임계요드 농도는 약 0.2mg/$\textrm{cm}^2$였고 임계 응력은 시험온도와 시편의 기계적 성질에 다라 변하였다. 파괴면을 주사전자 현미경으로 관찰한 결과, 초기 단계는 입내 파손 형태로 W-형의 균열을 포함하고 있었으며, 균열이 진행됨에 따라 입내 파손과 편성 파손이 혼합된 형태로 나타남을 알 수 있었다. 그리고 균열은 한 결정립에서 다른 결정립으로 단계적으로 전파되어 나갔다.

  • PDF

정상운반조건 해석을 위한 사용후핵연료집합체 유한요소모델 최적화 (Optimization of Spent Nuclear Fuel Assembly Finite Element Model for Normal Transportation Condition Analysis)

  • 김민식;박민정;장윤석
    • 한국압력기기공학회 논문집
    • /
    • 제19권2호
    • /
    • pp.163-170
    • /
    • 2023
  • Since spent nuclear fuel assemblies (SFA) are transported to interim storage or final disposal facility after cooling the decay heat, finite element analysis (FEA) with simplification is widely used to show their integrity against cladding failure to cause dispersal of radioactive material. However, there is a lack of research addressing the comprehensive impact of shape and element simplification on analysis results. In this study, for the optimization of a typical pressurized water reactor SFA, different types of finite element models were generated by changing number of fuel rods, fuel rod element type and assembly length. A series of FEA in use of these different models were conducted under a shock load data obtained from surrogate fuel assembly transportation test. Effects of number of fuel rods, element type and length of assembly were also analyzed, which shows that the element type of fuel rod mainly affected on cladding strain. Finally, an optimal finite element model was determined for other practical application in the future.

니켈 기반 초합금 클래드 판재의 열간 압연 제조 공정 유한요소해석 (Finite Element Analysis of the Hot Rolled Cladding for the Ni-based Superalloy/steel Corrosion-resistant Alloy (CRA) Plate)

  • 김찬양;배성준;이현석;봉혁종;이광석
    • 소성∙가공
    • /
    • 제33권3호
    • /
    • pp.208-213
    • /
    • 2024
  • Ni-based superalloys have exceptional performance in high-temperature strength, corrosion resistance, etc, and it has been widely used in various applications that require corrosion resistance at high-temperature operations. However, the relatively expensive cost of the Ni-based superalloys is one of the major hurdles. The corrosion-resisted alloy(CRA) clad materials can be a cost-effective solution. In this study, finite element analysis of the hot rolling process for manufacturing of the Alloy 625/API X65 steel CRA clad plates is conducted. The stress-strain curves of the two materials are measured in compressive tests for various temperature and strain rate conditions, using the Gleeble tester. Then, strain hardening behavior is modeled following the modified Johnson-Cook model. Finite element analysis of the hot rolled cladding process is performed using this strain rate and temperature dependent hardening model. Finally, the thickness ratio of the CRA and base material is predicted and compared with experimental values.

원자력 발전 주기기 제작에 적용되는 용접공정 (Welding process for manufacturing of Nuclear power main components)

  • 정인철;김용재;심덕남
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.43-46
    • /
    • 2010
  • As the nuclear power plant has been constructed continuously for several decades in Korea, the welding technology for components manufacturing and installation has been improved largely. Standardization for weld test and qualification was also established systematically according to the concerned code. The welding for the main components requires the high reliability to keep the constant quality level, which means the repeatability of weld quality. Therefore the weld process qualified by thorough test and evaluation is able to be applied for manufacturing. Narrow gap SAW and GTAW process are usually applied for girth seam welding of pressure vessel like Reactor vessel, steam generator, and etc. For the surface cladding with stainless steel and Inconel material, strip welding process is mainly used. Inside cladding of nozzles is additionally applied with Hot wire GTAW and semi-auto welding process. Especially the weld joint having elliptical weld line on curved surface needs a specialized weld system which is automatically rotating with adjusting position of the head torch. The small sized pipe, tube, and internal parts of reactor vessel requests precise weld processes like an automatic GTAW and electron beam welding. Welding of dissimilar materials including Inconel690 material has high possibility of weld defects like a lack of fusion, various types of crack. To avoid these kinds of problem, optimum weld parameters and sequence should be set up through the many tests. As the life extension of nuclear power plant is general trend, weld technologies having higher reliability is required gradually. More development of specialized welding systems, weld part analysis and evaluation, and life prediction for main components should be taken into a consideration extensively.

  • PDF