• Title/Summary/Keyword: Cladding System

Search Result 146, Processing Time 0.025 seconds

A REVIEW OF INHERENT SAFETY CHARACTERISTICS OF METAL ALLOY SODIUM-COOLED FAST REACTOR FUEL AGAINST POSTULATED ACCIDENTS

  • SOFU, TANJU
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.227-239
    • /
    • 2015
  • The thermal, mechanical, and neutronic performance of the metal alloy fast reactor fuel design complements the safety advantages of the liquid metal cooling and the pool-type primary system. Together, these features provide large safety margins in both normal operating modes and for a wide range of postulated accidents. In particular, they maximize the measures of safety associated with inherent reactor response to unprotected, doublefault accidents, and to minimize risk to the public and plant investment. High thermal conductivity and high gap conductance play the most significant role in safety advantages of the metallic fuel, resulting in a flatter radial temperature profile within the pin and much lower normal operation and transient temperatures in comparison to oxide fuel. Despite the big difference in melting point, both oxide and metal fuels have a relatively similar margin to melting during postulated accidents. When the metal fuel cladding fails, it typically occurs below the coolant boiling point and the damaged fuel pins remain coolable. Metal fuel is compatible with sodium coolant, eliminating the potential of energetic fuel-coolant reactions and flow blockages. All these, and the low retained heat leading to a longer grace period for operator action, are significant contributing factors to the inherently benign response of metallic fuel to postulated accidents. This paper summarizes the past analytical and experimental results obtained in past sodium-cooled fast reactor safety programs in the United States, and presents an overview of fuel safety performance as observed in laboratory and in-pile tests.

Simulation of Containment Pressurization in a Large Break-Loss of Coolant Accident Using Single-Cell and Multicell Models and CONTAIN Code

  • Noori-Kalkhoran, Omid;Shirani, Amir Saied;Ahangari, Rohollah
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1140-1153
    • /
    • 2016
  • Since the inception of nuclear power as a commercial energy source, safety has been recognized as a prime consideration in the design, construction, operation, maintenance, and decommissioning of nuclear power plants. The release of radioactivity to the environment requires the failure of multiple safety systems and the breach of three physical barriers: fuel cladding, the reactor cooling system, and containment. In this study, nuclear reactor containment pressurization has been modeled in a large break-loss of coolant accident (LB-LOCA) by programming single-cell and multicell models in MATLAB. First, containment has been considered as a control volume (single-cell model). In addition, spray operation has been added to this model. In the second step, the single-cell model has been developed into a multicell model to consider the effects of the nodalization and spatial location of cells in the containment pressurization in comparison with the single-cell model. In the third step, the accident has been simulated using the CONTAIN 2.0 code. Finally, Bushehr nuclear power plant (BNPP) containment has been considered as a case study. The results of BNPP containment pressurization due to LB-LOCA have been compared between models, final safety analysis report, and CONTAIN code's results.

Accelerated and Outdoor Exposure Tests of Aluminum Coated Steel Sheets

  • Kim, Jongmin;Lee, Jaemin;Lim, Sangkyu;Jung, Choonho
    • Corrosion Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.199-204
    • /
    • 2011
  • Hot dip metallic coated steels like as galvanized (GI), zinc-aluminium (GL) and aluminium coated steels are mostly used where corrosion resistance is needed. There are two kinds (type 1 and type 2) of aluminium coated steel being commercially used among them. Type 1 aluminium coated steel is coated with an Al-5~11 wt%Si alloy and Type 2 aluminium coated steel consists of commercially pure aluminium. Type 1 Al coated steel is generally used in automotive components and electrical appliances while type 2 aluminium coated steel is mainly used in construction applications such as building cladding panels, air conditioning and ventilation system. In this study, Type 1 aluminium coated steels have tested by accelerated conditions (salt spray or corrosive gas) and outdoor exposure condition in order to understand their corrosion behaviour. Due to the distinct corrosion mechanism of Al which exposes to the severe chloric condition, Salt Spray Test cannot predict the ordinary atmospheric corrosion of Al based coated materials. In addition, the test results and their corrosion feature of Al coated steel sheets will be discussed comparing with other metallic coated steel sheets of GI and GL.

Detection of Corrosion and Wall Thinning in Carbon Steel Pipe Covered With Insulation Using Pulsed Eddy Current

  • Park, Duck-Gun;Kishore, M.B.;Kim, J.Y.;Jacobs, L.J.;Lee, D.H.
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.57-60
    • /
    • 2016
  • Non Destructive Testing (NDT) methods that are capable of detecting the wall thinning and defects through insulation and cladding sheets are necessary. In this study we developed a Pulsed Eddy Current (PEC) system to detect wall thinning of ferro magnetic steel pipes covered with 95 mm thick fiber glass thermal insulator and shielded with aluminum plate of thickness 0.4 mm. In order to confirm the thickness change due to wall thinning, two different sensors, a hall sensor and a search coil sensor were used as a detecting element. In both the cases, the experimental data indicates a considerable change in the detected pulse corresponding to the change in sample thickness. The thickness of the tube was made to change such as 2.5 mm, 5 mm and 8 mm from the inner surface to simulate wall thinning. Fast Fourier Transform (FFT) was calculated using window approach and the results were summarized which shows a clear identification of thickness change in the test specimen by comparing the magnitude spectra.

Sipping Test Technology for Leak Detection of Fission Products from Spent Nuclear Fuel (사용후핵연료 핵분열생성물 누출탐상 Sipping 검사기술)

  • Shin, Jung Cheol;Yang, Jong Dae;Sung, Un Hak;Ryu, Sung Woo;Park, Young Woo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.2
    • /
    • pp.18-24
    • /
    • 2020
  • When a damage occurs in the nuclear fuel burning in the reactor, fission products that should be in the nuclear fuel rod are released into the reactor coolant. In this case, sipping test, a series of non-destructive inspection methods, are used to find leakage in nuclear fuel assemblies during the power plant overhaul period. In addition, the sipping test is also used to check the integrity of the spent fuel for moving to an intermediate dry storage, which is carried out as the first step of nuclear decommissioning, . In this paper, the principle and characteristics of the sipping test are described. The structure of the sipping inspection equipment is largely divided into a suction device that collects fissile material emitted from a damaged assembly and an analysis device that analyzes their nuclides. In order to make good use of the sipping technology, the radioactive level behavior of the primary system coolant and major damage mechanisms in the event of nuclear fuel damage are also introduced. This will be a reference for selecting an appropriate sipping method when dismantling a nuclear power plant in the future.

Constraint-corrected fracture mechanics analysis of nozzle crotch corners in pressurized water reactors

  • Kim, Jong-Sung;Seo, Jun-Min;Kang, Ju-Yeon;Jang, Youn-Young;Lee, Yun-Joo;Kim, Kyu-Wan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1726-1746
    • /
    • 2022
  • This paper presents fracture mechanics analysis results for various cracks located at pressurized water reactor pressure vessel nozzle crotch corners taking into consideration constraint effect. Technical documents such as the ASME B&PV Code, Sec.XI were reviewed and then a fracture mechanics analysis procedure was proposed for structural integrity assessment of various nozzle crotch corner cracks under normal operation conditions considering the constraint effect. Linear elastic fracture mechanics analysis was performed by conducting finite element analysis with the proposed analysis procedure. Based on the evaluation results, elastic-plastic fracture mechanics analysis taking into account the constraint effect was performed only for the axial surface crack of the reactor pressure vessel outlet nozzle with cladding. The fracture mechanics analysis result shows that only the axial surface crack in the reactor pressure vessel outlet nozzle has the stress intensity factor exceeding the low bound of upper-shelf fracture toughness irrespectively of considering the constraint effect. It is confirmed that the J-integral for the axial crack of the outlet nozzle does not exceed the ductile crack initiation toughness. Hence, it can be ensured that the structural integrity of all the cracks is maintained during the normal operation.

Fixed neutron absorbers for improved nuclear safety and better economics in nuclear fuel storage, transport and disposal

  • M. Lovecky;J. Zavorka;J. Jirickova;Z. Ondracek;R. Skoda
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2288-2297
    • /
    • 2023
  • Current designs of both large reactor units and small modular reactors utilize a nuclear fuel with increasing enrichment. This increasing demand for better nuclear fuel utilization is a challenge for nuclear fuel handling facilities. The operation with higher enriched fuels leads to reduced reserves to legislative and safety criticality limits of spent fuel transport, storage and final disposal facilities. Design changes in these facilities are restricted due to a boron content in steel and aluminum alloys that are limited by rolling, extrusion, welding and other manufacturing processes. One possible solution for spent fuel pools and casks is the burnup credit method that allows decreasing very high safety margins associated with the fresh fuel assumption in spent fuel facilities. This solution can be supplemented or replaced by an alternative solution based on placing the neutron absorber material directly into the fuel assembly, where its efficiency is higher than between fuel assemblies. A neutron absorber permanently fixed in guide tubes decreases system reactivity more efficiently than absorber sheets between the fuel assemblies. The paper summarizes possibilities of fixed neutron absorbers for various nuclear fuel and fuel handling facilities. Moreover, an absorber material was optimized to propose alternative options to boron. Multiple effective absorbers that do not require steel or aluminum alloy compatibility are discussed because fixed absorbers are placed inside zirconium or steel cladding.

Effects of Cladding and Antifreeze Solution on Cavitation Corrosion of AA3003 Tube of Heat Exchanger for Automobile

  • Young Ran Yoo;Seung Heon Choi;Hyunhak Cho;Young Sik Kim
    • Corrosion Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.203-214
    • /
    • 2024
  • A heat exchanger is a device designed to transfer heat between two or more fluids. In a vehicle's thermal management system, Al heat exchangers play a critical role in controlling and managing heat for efficient and safe operation of the engine and other components. The fluid used to prevent heat exchangers from overheating the engine is mostly tap water. Heat exchange performance can be maintained at sub-zero temperatures using a solution mixed with antifreeze. Although the fluid flowing through the heat exchanger can reduce the temperature inside the engine, it also has various problems such as cavitation corrosion. Cavitation corrosion characteristics in tap water and corrosion characteristics were evaluated in this study when antifreeze was added for test specimens where AA4045 was cladded on the inner surface of AA3003 tubes of a fin-type heat exchanger. The cavitation corrosion resistance of AA3003 was found to be superior to that of AA4045 regardless of the test solution due to higher corrosion resistance and hardness of AA3003 than those of AA4045. The cavitation corrosion rate of Al alloys increased with the addition of antifreeze.

Thermo-mechanical coupling behavior analysis for a U-10Mo/Al monolithic fuel assembly

  • Mao, Xiaoxiao;Jian, Xiaobin;Wang, Haoyu;Zhang, Jingyu;Zhang, Jibin;Yan, Feng;Wei, Hongyang;Ding, Shurong;Li, Yuanming
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2937-2952
    • /
    • 2021
  • A typical three-dimensional finite element model for a fuel assembly is established, which is composed of 16 monolithic U-10Mo fuel plates and Al alloy frame. The distribution and evolution results of temperature, displacement and stresses/strains in all the parts are numerically obtained and analyzed with a self-developed code of FUELTM. The simulation results indicate that (1) the out-of-plane displacements of Al alloy side plates are mainly attributed to the bending deformations; (2) enhanced out-of-plane displacements appear in fuel plates adjacent to the outside Al plates, which results from the occurred bending deformations due to the applied constraints of outside Al plates; (3) an intense interaction of fuel foil with the cladding occurs near the foil edge, which appears more heavily in the fuel plates adjacent to the outside Al plates. The maximum first principal stresses in the fuel foil are similar for all the fuel plates and appear near the fuel foil edge; while, the through-thickness creep strains of fuel foil in the fuel plate near the central region of fuel assembly are larger, and the induced creep damage might weaken the fuel skeleton strength and raise the fuel failure risk.

Analysis on Hypothetical Multiple Events of mSGTR and SBO at CANDU-6 Plants Using MARS-KS Code (중수로 원전 가상의 mSGTR과 SBO 다중 사건에 대한 MARS-KS 코드 분석)

  • Seon Oh YU;Kyung Won LEE;Kyung Lok BAEK;Manwoong KIM
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.1
    • /
    • pp.18-27
    • /
    • 2021
  • This study aims to develop an improved evaluation technology for assessing CANDU-6 safety. For this purpose, the multiple steam generator tube rupture (mSGTR) followed by an unmitigated station blackout (SBO) in a CANDU-6 plant was selected as a hypothetical event scenario and the analysis model to evaluate the plant responses was envisioned into the MARS-KS input model. The model includes logic models for controlling the pressure and inventory of the primary heat transport system (PHTS) decreasing due to the u-tubes' rupture, as well as the main features of PHTS with a simplified model for the horizontal fuel channels, the secondary heat transport system including the shell side of steam generators, feedwater and main steam line, and moderator system. A steady state condition was successfully achieved to confirm the stable convergence of the key parameters. Until the turbine trip, the fuel channels were adequately cooled by forced circulation of coolant and supply of main feedwater. However, due to the continuous reduction of PHTS pressure and inventory, the reactor and turbine were shut down and the thermal-hydraulic behaviors between intact and broken loops got asymmetric. Furthermore, as the conditions of low-flow coolant and high void fraction in the broken loop persisted, leading to degradation of decay heat removal, it was evaluated that the peak cladding temperature (PCT) exceeded the limit criteria for ensuring nuclear fuel integrity. This study is expected to provide the technical bases to the accident management strategy for transient conditions with multiple events.