• 제목/요약/키워드: Clad Steel

검색결과 73건 처리시간 0.025초

316계 스테인리스강과 소듐 냉각재와의 양립성 연구 (Compatibility Study between 316-series Stainless Steel and Sodium Coolant)

  • 김준환;김종만;차재은;김성호;이찬복
    • 대한금속재료학회지
    • /
    • 제48권5호
    • /
    • pp.410-416
    • /
    • 2010
  • Studies were carried out to establish the technology for sodium-clad compatibility and to analyze the compatibility behavior of the Sodium-cooled Fast Reactor (SFR) cladding material under a flowing sodium environment. The natural circulation facility caused by the thermal convection of the liquid sodium was constructed and the 316-series stainless steels were exposed at $650{^{\circ}C}$ liquid sodium for 1458 hours. The weight change and related microstructural change were analyzed. The results showed that the quasi-dynamic facility represented by the natural convection exhibited similar results compared to the conventional dynamic facility. Selective leaching and local depletion of the chromium, re-distribution of the carbide, and the decarburization process took place in the 316-series stainless steel under a flowing sodium environment. This process decreased as the sodium flowed along the channel, which was caused by the change in the dissolved oxygen and carbon activity in the liquid sodium.

서브머지드 아크 클래딩에 의한 표면 피복층의 마모특성 (Wear Characteristics of Submerged-Arc Cladding)

  • 김권흡;권오양
    • 한국정밀공학회지
    • /
    • 제20권1호
    • /
    • pp.179-186
    • /
    • 2003
  • This paper is to investigate the wear behavior of submerged-arc claddings by the wear test with a ball-on-disk type wear testing machine in air. The specimens were clad with Stoody105 alloy wire on a medium carbon steel (SM45C) substrate by submerged-arc cladding process under different welding parameters. The wear behavior of the cladding through ball-on-disk test has been studied under the wear load from 5 to 16 N and the sliding speed from 8 to 35 cm/s. The weight loss of the specimen was measured. Scanning electron micrographs of the worn surface show a layer of oxide film formed on the worn surface. Oxidation wear mechanism controls the wear process. The spatting of the oxide is caused by the repeated rubbing fatigue mechanism.

원자로 용기의 가압열충격에 대한 파괴역학 해석 - 탄소성 거동과 클래드부의 영향 - (Fracture Mechanics Analysis of Reactor Pressure Vessel Under Pressurized Thermal Shock-The Effect of Elastic-Plastic Behavior and Stainless Steel Cladding-)

  • 주재황;강기주;정명조
    • 대한기계학회논문집A
    • /
    • 제26권1호
    • /
    • pp.39-47
    • /
    • 2002
  • Performed here is an assessment study for deterministic fracture mechanics analysis of a pressurized thermal shock(PTS). The PTS event means an event or transient in pressurized water reactors(PWRs) causing severe overcooling(thermal shock) concurrent with or followed by significant pressure in the reactor vessel. The problems consisting of two transients and 10 cracks are solved and maximum stress intensity factors and maximum allowable nil-ductility reference temperatures are calculated. Their results are compared each other to address the general characteristics between transients, crack types and analysis methods. The effects of elastic-plastic material behavior and clad coating on the inner surface are explored.

An Overview of The Commercialisation of The Spray Forming Process

  • Leatham, Alan
    • 한국분말재료학회지
    • /
    • 제3권4호
    • /
    • pp.227-232
    • /
    • 1996
  • (i) The development of a metallurgical bond during the spray forming of clad products has offered the possibility of manufacturing large rolls, including those used in hot and cold strip mills. Small rolls are already being produced in Japan. (ii) Technical developments, including the use-of-multi-atomizers have resulted in the elimination of porosity from the internal bore of a sprayed tube. Bimetallic tubing can also be manufactured and the installation of a 4.5 ton tube plant in the USA should provide low operation costs. (iii) Spray forming offers a potentially low cost manufacturing route for superalloy ring/casing components in high strength superalloys. (iv) A large pilot plant has been built for the spray forming of ultra-clean superalloys for turbine disc applications. (v) Using twin-atomizing technology, special steel billets have been spray formed up to 400mm diameter with deposition yields in excess of 90%. (vi) Al/Si alloy extrusion billets with excellent dimensional tolerances are being manufactured for large scale automotive applications. Several new aluminum alloys have also been developed, including high strength, low density and low cocfficient of expansion materials. (vii) New copper alloys have been developed and pilot plants are in operation to produce these alloys once markets have become established.

  • PDF

가압열충격 사고시 클래스 하부균열 안전성 평가 방법에 관한 연구 (A Study on the Integrity Evaluation Method of Subclad Crack under Pressurized Thermal Shock)

  • 구본걸;김진수;최재봉;김영진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.286-291
    • /
    • 2000
  • The reactor pressure vessel is usually cladded with stainless steel to prevent corrosion and radiation embrittlement, and number of subclad cracks have been found during an in-service-inspection. Therefore assessment for subclad cracks should be made for normal operating conditions and faulted conditions such as PTS. Thus, in order to find the optimum fracture assessment procedures for subclad cracks under a pressurized thermal shock condition, in this paper, three different analyses were performed, ASME Sec. XI code analysis, an LEFM(Liner elastic fracture mechanics) analysis and an EPFM(Elastic plastic fracture mechanics) analysis. The stress intensity factor and the Maximum $RT_{NDT}$ were used for characterizing. Analysis based on ASME Sec. XI code does not completely consider the actual stress distribution of the crack surface, so the resulting Maximum allowable $RT_{NDTS}$ can be non-conservative, especially for deep cracks. LEFM analysis, which does not consider elastic-plastic behavior of the clad material, is much more non-conservative than EPFM analysis. Therefore, It is necessary to perform EPFM analysis for the assessment of subclad cracks under PTS.

  • PDF

가압열충격 사고시 결함 이상화 방법이 구조물 건전성 평가에 미치는 영향 (Effect of Flaw Characterization on the Structural Integrity Evaluation Under Pressurized Thermal Shock)

  • 김진수;최재붕;김영진;박윤원
    • 대한기계학회논문집A
    • /
    • 제25권2호
    • /
    • pp.275-282
    • /
    • 2001
  • The reactor pressure vessel is usually cladded with stainless steel to prevent corrosion and radiation embrittlement. Number of subclad cracks may be found during an in-service-inspection due to the presence of cladding. It is specified, in ASME Sec. XI, that a subclad crack is characterized as a surface crack when the thickness of the clad is less than 40% of the crack depth. This condition is provided to keep the crack integrity evaluation conservative. In order to refine the fracture assessment procedures for such subclad cracks under a pressurized thermal shock condition, three dimensional finite element analyses are applied for various subclad cracks existing under cladding. A total of 36 crack geometries are analyzed, and the results are compared with those for surface cracks. The resulting stress intensity factors for subclad cracks are 6 to 44% less than those for surface cracks. It is proven that the flaw characterization condition as specified in ASME Sec. XI can be overly conservative for some subclad cracks.

AS wire의 생산성에 미치는 클래딩속도와 예열온도의 영향 (Effects of cladding speed and preheating temperature on the productivity of AS wire)

  • 윤종서;이상헌
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.373-376
    • /
    • 2005
  • In recent years, there has been a growing need fur productivity improvement of ACS wire (Aluminum clad Steel wire) In optical communication market. So, it is necessary to improve the production speed and following quality of ACS wire to reduce the unit cost of the products. In this study, the pre-heating temperature and cladding speed is chosen as the factors can influence the mechanical and metallurgical properties during cladding, and the changing behavior of mechanical property and microstructure by controlling above two factors are investigated. And the bearing length and approach angle in cladding die are selected as the important elements for designing optimum die enabling high speed cladding. So we carried out FE(Finite Element) analysis using the above two elements as variables. This paper aims to understand the change of mechanical properties and microstructure according to the change of each factor during cladding and suggest the optimized cladding condition to get the best quality of OPGW. And also we would like to introduce the optimum die structure that enables high-speed cladding.

  • PDF

롤 아연된 STS-Al-Mg 이종금속판재의 온도와 변형률속도에 따른 1축인장 변형특성 (Temperature and Strain Rate Dependent Tension Properties of Stainless Steel-Aluminum-Magnesium Multilayered Sheet Fabricated by Roll Bonding)

  • 황범규;이광석;홍순익;이영선
    • 소성∙가공
    • /
    • 제20권3호
    • /
    • pp.257-264
    • /
    • 2011
  • Multilayer(clad) sheets, composed of two or more materials with different properties, are fabricated using the roll-bonding process. A good formability is an essential property for a multilayered sheet in order to manufacture parts by plastic deformation. In this study, the influences of temperature and strain rate on the plastic properties of stainless steel-aluminum-magnesium multilayered(STS-Al-Mg) sheets were investigated. Tensile tests were performed at various temperatures and strain rates on the multilayered sheet and on each separate layer. Fracture of the multilayered sheet was observed to be temperature-dependent. At the base temperature of $200^{\circ}C$, all materials fractured simultaneously. At lower temperatures, the Mg alloy sheet fractured earlier than the other materials. Conversely, the other materials fractured earlier than the Mg alloy sheet at higher temperatures. The uniform and total elongations of the multilayered sheet were observed to be higher than that of each material at a temperature of $250^{\circ}C$. Larger uniform elongations were obtained for higher strain rates at constant temperature. The same trend was observed for the Mg alloy sheet, which exhibited the lowest elongation among the three materials. The tensile strengths and elongations of the single layer sheets were compared to those of the multilayer material. The strength of the multilayered sheet was successfully calculated by the rule of mixture from the values of each single layer. However, no simple correlation between the elongation of each layer and that of the multilayer was obtained.

시력교정용 금속테설계의 이론적고찰 (Theoretical Considerations on the Design of Metal Frames for Refractive Correction)

  • 강현식
    • 한국안광학회지
    • /
    • 제3권1호
    • /
    • pp.39-73
    • /
    • 1998
  • 안경테는 국제적으로 대량 교역되는 상품의 하나이다. 그렇기 때문에 오늘날 국제표준화기구(ISO-TC172/SC7/WG2)에서는 독일, 미국, 영국, 이태리, 프랑스, 스페인, 일본 등의 안경관리 전문학자, 기술자, 제조업자 등이 모여 안경테의 국제 간 원활히 하고, 소비자에게는 이익과 service를 제공하고, 제조업자에게는 생산성제고와 제조원가를 절감할 수 있는 국제적 협력을 조장하기 위하여 안경테에 관한 용어, 측정법, 부품규격, 검사 및 시험방법 등에 관한 규정을 제정하고 있다. 그런데도 불구하고 우리나라의 안경업계가 이들 회원국의 활동에 관심이 없다는 것은 안경산업의 장래를 생각할 때 암울하기만 하다. 우리나라는 1970-1980년대에 걸쳐 수출이 연평균 약 20%이상 신장되었으나 1990년대 초반부터 수출실적은 미화 2억달라를 넘어선채 정체상태를 벗어나지 못하고 있다. 그런데 정체된 안경테의 수출을 진흥시키기 위해서는 무엇보다는 신소재와 독자적인 디자인의 개발, 국제표준규격에 준한 설계와 제작, 제조기술의 혁신, 특허정보의 활용 및 국제적인 판촉활동 등이, 활발히 전개되어야 하며, 대구광역시의 섬유기술연구소와 같은 형태의 안경기술연구소 또는 안경전문기술위원회의 발족과 정부차원의 적극적인 지원이 시급한 당면과제이다. 본 논문의 궁긍적 목표는 우리나라 안경제조업자에게 ISO-Working Group2 등이 제정 발표한 안경테의 관계규정 및 규격을 소개하고 금속테를 설계 제작할 때 보완할 이론적 지침을 제시해서 설계상 결함이 없는 금속테를 제작하는데 있다.

  • PDF

STACIR/AW 410SQmm 가공송전선의 경년열화와 이도거동(III) (Sag Behavior of STACIR/AW 410SQmm Overhead Conductor in accordance with the Aging)

  • 김상수;김병걸;신구용;이동일;민병욱
    • 한국전기전자재료학회논문지
    • /
    • 제19권3호
    • /
    • pp.280-286
    • /
    • 2006
  • As a way to expand electric capacity in conductor with electric power demand, STACIR/AW (Super Thermal-resistant Aluminum-alloy Conductors Aluminum-clad Invar-Reinforced) conductor which has high electric current and heat resistance characteristics have been developed. STACIR/AW power line is mechanical composite wire composed of steel cores for dip control and aluminum conductors for sending electric current. Recently, to ensure stable operation and prediction of wire life span of STACIR/AW conductor, a heat property of STACIR/AW conductor have been investigated. In the present work, a change of essential property with long term-heat exposure of STACIR/AW conductor and its structure material, INVAR wire and Al conductor, have been investigated. INVAR/AW is approximately $3.2\;{\mu}m/m^{\circ}C$. thermal expansion coefficient of INVAR/AW wire increases with time of heat exposure. the thermal expansion coefficient of INVAR/AW is markedly influenced by heat and mechanical treatment. creep rate(0.242) of STACIR/AW $410\;mm^2$ conductor at room temperature is much higher than that(0.022) at $210\;^{\circ}C$ STACIR/AW $410\;mm^2$ conductor has minimum creep rate at operating temperature. To lower creep rate with increase temperature is more unique characteristics in STACIR/AW. It is expected that STACIR/AW turned its tension to INVAR/AW at the transition temperature. at room temperature, the tension apportionment of INVAR/AW in STACIR/AW is about $50\;\%$. but whole tension of STACIR/AW is placed on the INVAR/AW alone of core metal above transition temperature.