• Title/Summary/Keyword: Clad Steel

Search Result 73, Processing Time 0.026 seconds

A Study on the Shape and Microstructural Change of Explosion-Welding Al/Steel Interface with Explosive Thickness (폭약살포 높이에 따른 Al/steel 폭발 접합계면의 형상 및 조직 변화에 관한 연구)

  • 김희진;강봉용
    • Journal of Welding and Joining
    • /
    • v.14 no.4
    • /
    • pp.62-70
    • /
    • 1996
  • Al or Al-alloy have been known to be able to be claded on various materials by using explosive welding process, however, the intermetallic layer frequently formed along the interface have made this process very complicated. In this study, it was focussed to select the process variables, which can get rid of interfacial layer in the Al-claded steel plate. As a result, it was demonstrated that there was a certain range of explosive thickness which did not form the intermetallic phase as well as the non-bonded area. On the other hand, ultasonic tests performed for identifying the presence of interfacial layer nondestructively showed that it could be applied for the intended purpose but its result was weakly related with the microstructural quality of interface.

  • PDF

Evaluation and Development of Corrosion Resistant Materials for Smokestacks

  • Ebara, Ryuichiro
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.211-218
    • /
    • 2007
  • In this paper, evaluation and development of corrosion resistant materials for smokestacks is summarized mainly on the basis of the author's experimental results. Operating environments of smokestacks and the problems of conventional lining materials for smokestacks are described briefly. The emphasis is focused upon the evaluation and development of recently developed corrosion resistant steels such as YUS260 for heavy oil fired smokestacks, WELACC5 for LNG fired smokestacks and NSL310MoCu Clad steel for coal fired smokestacks. Corrosion resistance of these steels under laboratory corrosion testing environments and actual environments are evaluated. Finally future problems of corrosion resistant materials for smokestacks are touched on briefly.

EVALUATION OF GALVANIC CORROSION BEHAVIOR OF SA-508 LOW ALLOY STEEL AND TYPE 309L STAINLESS STEEL CLADDING OF REACTOR PRESSURE VESSEL UNDER SIMULATED PRIMARY WATER ENVIRONMENT

  • Kim, Sung-Woo;Kim, Dong-Jin;Kim, Hong-Pyo
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.773-780
    • /
    • 2012
  • The article presented is concerned with an evaluation of the corrosion behavior of SA-508 low alloy steel (LAS) and Type 309L stainless steel (SS) cladding of a reactor pressure vessel under the simulated primary water chemistry of a pressurized water reactor (PWR). The uniform corrosion and galvanic corrosion rates of SA-508 LAS and Type 309L SS were measured in three different control conditions: power operation, shutdown, and power operation followed by shutdown. In all conditions, the dissimilar metal coupling of SA-508 LAS and Type 309L SS exhibited higher corrosion rates than the SA-508 base metal itself due to severe galvanic corrosion near the cladding interface, while the corrosion of Type 309L in the primary water environment was minimal. The galvanic corrosion rate of the SA-508 LAS and Type 309L SS couple measured under the simulated power operation condition was much lower than that measured in the simulated shutdown condition due to the formation of magnetite on the metal surface in a reducing environment. Based on the experimental results, the corrosion rate of SA-508 LAS clad with Type 309L SS was estimated as a function of operating cycle simulated for a typical PWR.

Interpretation of Strain States during Clad-Rolling of STS/Al 5 Ply Composites by Means of Texture Analysis (집합조직 분석에 의한 5겹 STS/Al 복합재 클래드 압연 시 변형상태 해석)

  • Kang H. G.;Park J. S.;Park S. H.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.303-306
    • /
    • 2005
  • Two composites of five plies of STS/Al/Al/Al/STS and STS/Al/STS/Al/STS were produced by roll-cladding at $350^{\circ}C$ from ferritic stainless steel (STS) and aluminum (Al) sheets. In order to analyze the strain states during roll-cladding, the evolution of textures at different through-thickness positions in the roll-clad composites was investigated. Simulations with the finite element method (FEM) disclosed that a strain state which was similar to that of normal rolling with a high friction between roll surface and Al sample led to the formation of texture gradients in the Al sheets in the STS/Al/Al/Al/STS composite. Differences in the material velocity of STS and Al in the rolling direction gave rise to the formation of the shear texture in the Al sheets in the STS/Al/STS/Al/STS composite.

  • PDF

Evaluation of Underclad Crack Susceptibility of the SA508 Class 3 Steel for Pressure Vessels -Optimization of Heat Input- (압력용기용 SA508 class3강에 대한 underclad 균열의 감수성 평가 - 입열량의 최적화)

  • 김석원;양성호;김준구;이영호
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.139-149
    • /
    • 1995
  • Many pressure vessels for the power plants are fabricated from low alloy ferritic steels. The inner sides of the pressure vessels are commonly weld_cladded with austenitic stainless steels to minimize problems of corrosive attack. The submerged-arc welding(SAW) process is now used in preference to other processes because of the possibilities open to automation to reduce the overaII welding times. The most reliable way to avoid underclad cracks(UCC) which are often detected at the overlap of the clad beads is to use nonsusceptible steels such as SA508 class 3. At present domestically developed forging steel of SA508 cl.S is now being cladded with single layer by using 90mm wide strip, which transfers higher heat input into the base metal compared to the conventional two layers strip cladding which has been in wide use with 30-60 mm wide strip. But the current indices for the influence of heat input on crack susceptibility are not accurate enough to express the subtle difference in crack susceptibility of the steel. Therefore, the purpose of this present study is: l) To determine UCC susceptibility on domestic forging steel, SA508 cl.S cladded with single layer by using submerged arc 90mm strip and, 2) To optimize heat input range by which the crack susceptibility could be eliminated.

  • PDF

Fabrication of Low Carbon Steel Coated with 18%Cr-2.5%Ni-Fe Powder by Laser Cladding and Its Application on Plastic Injection Mold for Aluminum Diecasting

  • Kim, Cheol-Woo;Yoo, Hyo-Sang;Cho, Kyun-Taek;Jeon, Jae-Yeol;Choi, Se-Weon;Kim, Young-Chan
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.601-607
    • /
    • 2021
  • Laser cladding a surface treatment process that grants superior characteristics such as toughness, hardness, and corrosion resistance to the surface, and rebuilds cracked molds; as such, it can be a strong tool to prolong service life of mold steel. Furthermore, compared with the other similar coating processes - thermal spray, etc., laser cladding provides superior bonding strength and precision coating on a local area. In this study, surface characteristics are studied after laser cladding of low carbon steel using 18%Cr-2.5%Ni-Fe powder (Rockit404), known for its high hardness and excellent corrosion resistance. A diode laser with wavelength of 900-1070 nm is adopted as laser source under argon atmosphere; electrical power for the laser cladding process is 5, 6, and 10 kW. Fundamental surface characteristics such as crossectional microstructure and hardness profile are observed and measured, and special evaluation, such as a soldering test with molten ALDC12 alloy, is conducted to investigate the corrosion resistance characteristics. As a result of the die-soldering test by immersion of low carbon alloy steel in ALDC12 molten metal, the clad layer's soldering thickness decreases.

High strength's union of mass layers metal bearing (고강성 다층 메탈베어링의 접합)

  • 전재억;황영모;김수광;계중읍;김준안;하만경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.792-795
    • /
    • 2004
  • Despite is product that ship, vehicles, development equipment and Metal Bearing for plant equipment that is mass-produced by present domestic companies Cast White Metal Lining Bearing that is Bimetal Bearing standing 2 generation is accomplishing master and servant and this is foreseen to be used widely on industry whole in hereafter but Cast White Metal Bearing need minuteness processing, while price competitive power is depending on income from superior another thing area than itself manufacture already in advanced nation to lowdown that the technique is generalized widely, when take into account technology change aspect of industrial technology developing country, Go added value creation by deepening of price competition is judged to be difficult hereafter. Because domestic production and supply are wholly lacking almost in Metal Bearing Cladding that take advantage of these technology, Data-base about connection technology is weak with technique and Know-How for product. This research unites Back Steel and Aluminium Alloy different kind metal and make the Clad river studying technology about union of Gogangseong Dacheung metal bearing hereupon.

  • PDF

IRRADIATION EMBRITTLEMENT OF CLADDING AND HAZ OF RPV STEEL

  • Lee J.S.;Kim I.S.;Jang C.H.;Kimura A.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.405-410
    • /
    • 2006
  • Microstructural features and their related mechanical property changes in the 309L cladding and the heat affected zone (HAZ) of SA508 cl.3 steel were investigated through the use of TEM, tensile and small punch (SP) tests. The specimens were irradiated at 563 K up to the neutron fluences of $5.79{\times}10^{19}n/cm^2$ (>1MeV). The microstructure of the clad was mainly composed of a fcc ${\gamma}-phase$, a low percentage of bcc ${\delta}-ferrite$, and a brittle ${\sigma}-phase$. Along the weld fusion line there formed a heavy carbide precipitation with a width of $20{\sim}40{\mu}m$, showing preferential cracking during plastic deformation. The yield stress and ductile-to-brittle transition temperature (DBTT) of the irradiated clads increased. The origin of the hardening and the shift of the DBTT are discussed in terms of the irradiation-produced defect clusters of a fine size and brittle ${\sigma}-phase$.

Wear characteristics of High Carbon 9CrSi Alloy Steel of Laser Surface Cladding (Laser Surface Cladding 고탄소 9CrSi 합금강의 마모 특성)

  • Yu, Neung-Hui;Gang, Seong-Gun
    • Korean Journal of Materials Research
    • /
    • v.11 no.10
    • /
    • pp.813-819
    • /
    • 2001
  • The microstructure and the distribution of hardness of Co and A1 alloy powder cladding layer in high carbon 9CrSi alloy steel for roll materials cladded by laser surface cladding were investigated. And, for the evaluation of soundness as the roll materials, we examined the wear resistance of the cladding materials with the wear appratus of pin on disc type. The experimental results showed that the microstructure of laser cladding layer was constituted with the clad surface layer, the alloy layer, the heat treatment layer with base metal. The wear resistance of Ni alloy Powder cladding material was superior to that of Co alloy powder cladding material both at the low speed (0.46m/s) and the high speed(0.92m/s). It seemed that the behavior of wear showed the abrasive wear at the early stage and the adhesive wear at the late stage.

  • PDF

The Effect of friction between Roll and STS the Roll Cladding Behavior of STS/Al/STS Sandwich Sheet (압연에 의한 STS/AI/STS 클래드판재 제조시 롤과 STS 사이의 마찰의 영향)

  • 정영훈;지광구;서진유;신명철
    • Transactions of Materials Processing
    • /
    • v.11 no.6
    • /
    • pp.482-486
    • /
    • 2002
  • Sandwich sheets composed of stainless steel/aluminum/stainless steel were produced by roll cladding. In order to investigate the effect of the friction between roll and cladding sample, the lubrication condition of the roll surface was varied. Clad rolling without lubrication gave rise to a small increment of the normal strain of aluminum in the rolling direction. This experimental result was confirmed by FEM modeling. Through-thickness hardness gradients in the mid aluminum layer was successfully explained by variations of the strain state through thickness layers. FEM modeling implied that cladding without lubrication led to a large shear strain variation at the surface of aluminum layer.