• Title/Summary/Keyword: Clad

Search Result 408, Processing Time 0.025 seconds

Fabrication and Characterization of PLC-based Mach-Zehnder Interferometer Sensor (PLC-기반의 마흐-젠더 간섭계 센서 제작 및 특성 평가)

  • Kim, Jun-Hyong;Yang, Hoe-Yong;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.390-390
    • /
    • 2008
  • In this paper, we have designed and fabricated optical waveguides based on the Mach-Zehnder Interferometer (MZI) for application to sensor. The evanecent-wave sensor based on the MZI principle has sufficiently high sensitivity to measure the change of the refractive index on surface of a waveguide. The waveguides were optimized at a wavelength of 1550 nm and fabricated according to the design rule of 0.45 delta%, which is the difference of refractive index between the core and clad. The fabrication of MZI optical waveguides was performed by a conventional Planar Lightwave Circuit (PLC) fabrication process. The fabricated MZI optical waveguide device was measured. According to the measurement result, the insertion loss of MZI optical waveguide device was below 3.5 dB and the polarization dependent loss (PDL) was within 0.1dB. In addition, we analyzed optical properties of MZI sensor according to the refractive index change of the sensor arm.

  • PDF

An Analysis of FCCL Shielding Effect for EMF Attenuation to On-Line Electric Vehicle (On-Line Electric Vehicle의 EMF 저감을 위한 FCCL 차폐효과 분석)

  • Shim, Hyung-Wook;Kim, Jong-Woo;Cho, Dong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.770-775
    • /
    • 2014
  • According to ICNIRP guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields up to 300GHz, magnetic flux density which range from 3Hz to 150kHz are regulated to lower than $6.25{\mu}T$. In order to comply with its standard, OLEV(On-Line Electric Vehicle) have been designed considering EMF(Electro-Magnetic Field) reduction. However, if a current flowing in power line would be bigger for increasing power transfer efficiency, the established shield system no longer acts their role properly. In this paper, therefore, FCCL(Flexible Copper Clad Laminate) is applied to power line and pick-up devices to solve the problems. Though, the FCCL is normally utilized to insulator on circuit board, because of its high heat resistance characteristic, flexibility and thin properties, it makes effectiveness in the shielding device as well. 4 types of FCCL shielding structure are introduced to power line and pick-up devices. From the results, the FCCL which are placed in proposed positions shows maximum EMF reduction compared to the established shielding structure. Henceforth, if OLEV is applied FCCL shielding structure in practice, it will not only be more safe but also step forward to commercialization near future.

High-power Quasi-continuous Wave Operation of Incoherently Combined Yb-doped Fiber Lasers

  • Jeon, Minjee;Jung, Yeji;Park, Jongseon;Jeong, Hoon;Kim, Ji Won;Seo, Hongseok
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.525-528
    • /
    • 2017
  • High-energy, high-power, quasi-continuous wave (QCW) operation of double-clad Yb fiber lasers incorporating an incoherent signal combiner is reported. We constructed four efficient, high-power Yb fiber lasers, each of which produced rectangular pulses at 1080 nm with a pulse energy greater than 15 J, and a pulse duration of 10 ms at a repetition rate of 10 Hz, corresponding to an average power of over 150 W and a peak power of over 1.5 kW for ~200 W of incident pump power at 915 nm. These laser outputs were combined by a homemade incoherent fiber signal combiner with low loss, yielding a maximum peak power of ~6.0 kW in a beam with $M^2{\approx}12.5$. The detailed laser characteristics and prospects for further power scaling in QCW operation are discussed.

Application of Electromagnetic Fields to Improve the Removal Rate of Radioactive Corrosion Products

  • Kong, Tae-Young;Lee, Kun-Jai;Song, Min-Chul
    • Nuclear Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.549-558
    • /
    • 2004
  • TTo comply with increasingly strict regulations for protection against radiation exposure, many nuclear power plants have been working ceaselessly to reduce and control both the radiation sources within power plants and the radiation exposure experienced by operational and maintenance personnel. Many research studies have shown that deposits of irradiated corrosion products on the surfaces of coolant systems are the main cause of occupational radiation exposure in nuclear power plant. These corrosion product deposits on the fuel-clad surface are also known to be main factors in the onset of axial offset anomaly (AOA). Hence, there is a great deal of ongoing research on water chermistry and corrosion processes. In this study, a magnetic filter with permanent magnets was devised to remove the corrosion products in the coolant stream by taking advantage of the magnetic properties of the corrosion products demonstrated a removal efficiency of over 90% for particles above 5${\mu}m$. This finding led to the construction of an electromagnetic device that causes the metallic particulates to flocculate into larger aggregates of about 5${\mu}m$ in diameter by using a novel application of electromagnetic flocculation on radioactive corrosion products.

Photocatalytic degradation of TCE using solar energy in POFR (플라스틱 광섬유 광촉매 반응기에서 태양에너지를 이용한 TCE의 광촉매 분해)

  • Jeong, Hee-Rok;Moon, Il;Joo, Hyun-Ku;Jun, Myung-Seok
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.3
    • /
    • pp.57-65
    • /
    • 2002
  • The photocatalytic degradation of TCE using solar energy in POFR was studied. The use of solar energy was investigated in plastic optica fiber photocatalytic reactor (POFR). In POFR, the main parameters of photocatalytic degradation of TCE were lihgt intensity, thickness of $TiO_2$-coated film on plastic fiber core, the same of total $TiO_2$-coated surface area with changed length. We studied the apparent photonic efficiency and photocatalytic degradation rate of TCE in POFR. The apparent photonic efficiency of various light intensities was decreased by an incresed intensities. The photocatalytic activities of $TiO_2$-coated optical fiber reactor system depended on the coating thickness, and total clad-stripped surface area of POF. Photocatalytic degradation of trichloroethylene ($C_2HCl_3$, TCE) in the gas-phase was elucidated by using $TiO_2$-coated plastic optical fiber reactor. In TCE degradation, in-situ FTIR measurement resulted in mineralization into $CO_2$.

Characteristics of BMN Thin Films Deposited on Various Substrates for Embedded Capacitor Applications (임베디드 커패시터의 응용을 위해 다양한 기판 위에 평가된 BMN 박막의 특성)

  • Ahn, Kyeong-Chan;Kim, Hae-Won;Ahn, Jun-Ku;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.342-347
    • /
    • 2007
  • $Bi_6Mg_2Nb_4O_{21}(BMN)$ thin films were deposited at various substrates by sputtering system for embedded capacitor applications. BMN thin films deposited at room temperature are manufactured as MIM(Metal/Insulator/Metal) structures. Dielectric properties and leakage current density were investigated as a function of various substrates and thickness of BMN thin films. Leakage current density of BMN thin films deposited on CCL(Copper Clad Laminates) showed relatively high value ($1{\times}10^{-3}A/cm^2$) at an applied field of 300 kV/cm on substrates, possibly due to relatively high value of roughness(rms $50{\AA}$) of CCL substrates. 100 nm-thick BMN thin films deposited on Cu/Ti/Si substrates showed the capacitance density of $300 nF/cm^2$, a dielectric constant of 32, a dielectric loss of 2 % at 100 kHz and the leakage current density of $1{\times}10^{-6}A/cm^2$ at an applied field of 300 kV/cm. BMN capacitors are expected to be promising candidates as embedded capacitors for printed circuit board(PCB).

Laser Microfabrication of Multidirectional Side-fire Optical Fiber Tip (전방과 측면 방사 조절이 가능한 의료용 광섬유 팁 가공 기술)

  • Jung, Deok;Sohn, Ik-Bu;Noh, Young-Chul;Kim, Jin-Hyeok;Kim, Changhwan;Lee, Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.10
    • /
    • pp.1017-1022
    • /
    • 2013
  • Currently, various optical fiber tips are used to deliver laser beam for endoscopic surgery. In this paper, we demonstrated multidirectional (forward and side) firing optical fiber tip using a femtosecond micromachining and $CO_2$ laser polishing technology. We controlled the edge width of optical fiber tip, by modulating the condition of $CO_2$ laser, to regulate the amount of side and forward emission. The distal end of the optical fiber with core/clad diameter of $400/440{\mu}m$ was microstructured with cone shape by using a femtosecond laser. And then the microstructured optical fiber tip was polished by $CO_2$ laser beam result in smoothing and specular reflection at the surface of the cone structure. Finally, we operated the LightTools simulation and good agreement was generally found between the proposed model and experimental simulation.

Development of Transportation Capsule for Spent Nuclear Fuel Rod Cuts (사용후핵연료봉 이송 Capsule의 개발)

  • Hong D.H.;Jin J.H.;Jung J.H.;Kim K.H.;Yoon J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.1055-1058
    • /
    • 2005
  • In the ACPF(Advanced spent nuclear fuel Conditioning Process Facility), the spent fuel pellets which are highly radioactive materials are separated with its clad and are fed into the next conditioning process. For this, at the other facility called PIEF(Post Irradiation Examination Facility) a spent fuel rod, 3.5 m long, is cut by 25 cm long which is suitable length fur the decladding process. These rod-cuts are packed into the capsule and are moved to the ACPF. Once the capsule is unloaded in the ACPF, the rod-cut is taken out one-by-one from the capsule and installed on the decladding device. In these processes, the crushed spent fuel pellet can be scattered inside the facilities and thus it contaminate the hot cell. In this paper, we developed the specially designed capsule which prevents the pellets scattering and remarkably reduces the leading and unloading time of the rod-cuts.

  • PDF

ASSESSMENT OF THE TiO2/WATER NANOFLUID EFFECTS ON HEAT TRANSFER CHARACTERISTICS IN VVER-1000 NUCLEAR REACTOR USING CFD MODELING

  • MOUSAVIZADEH, SEYED MOHAMMAD;ANSARIFAR, GHOLAM REZA;TALEBI, MANSOUR
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.814-826
    • /
    • 2015
  • The most important advantage of nanoparticles is the increased thermal conductivity coefficient and convection heat transfer coefficient so that, as a result of using a 1.5% volume concentration of nanoparticles, the thermal conductivity coefficient would increase by about twice. In this paper, the effects of a nanofluid ($TiO_2$/water) on heat transfer characteristics such as the thermal conductivity coefficient, heat transfer coefficient, fuel clad, and fuel center temperatures in a VVER-1000 nuclear reactor are investigated. To this end, the cell equivalent of a fuel rod and its surrounding coolant fluid were obtained in the hexagonal fuel assembly of a VVER-1000 reactor. Then, a fuel rod was simulated in the hot channel using Computational Fluid Dynamics (CFD) simulation codes and thermohydraulic calculations (maximum fuel temperature, fluid outlet, Minimum Departure from Nucleate Boiling Ratio (MDNBR), etc.) were performed and compared with a VVER-1000 reactor without nanoparticles. One of the most important results of the analysis was that heat transfer and the thermal conductivity coefficient increased, and usage of the nanofluid reduced MDNBR.

Quality Characteristics of Early Varieties of Citrus Unshiu Collected at Different Packing Houses as Cultivation Area in Cheju (선과장을 중심으로 한 주요 생산지역별 조생온주의 품질 특성)

  • Go, Jeong-Sam;Yang, Yeong-Taek;Gang, Sun-Seon
    • Food Science and Preservation
    • /
    • v.4 no.1
    • /
    • pp.53-59
    • /
    • 1997
  • Physicochemical properties affecting on the quality of Citrus unshiu Marc. var miyagawa and C. unshiu Marc. var, okitsu according to cultivation area in Cheju were investigated. Linear correlations (r>0.9) were showed between fruit size and peel thickness. There were much difference between cultivation areas in soluble solids of C. unshiu Marc. var. okitsu. The difference were not so much in soluble solids and acid contents of citrus fruits produced at same area below 65mm of fruit diameter, but the quality of large size fruits were inferior. Brix/Acid ratio could not be index for quality evaluation, because of individual deviation. Soluble solid content of citrus fruits produced in south Cheju was higher than that produced in north Cheju. Acid content and Brix/Acid ratio of citrus fruits produced in south Cheju was lower than that produced in north Cheju. The quality of C. unshiu Marc. var. miyagawa clad not so much difference between cultivation area, but the difference of quality were recognized significantly in C. unshiu Marc. var. okitsu.

  • PDF