• Title/Summary/Keyword: Civil infrastructure

Search Result 1,525, Processing Time 0.03 seconds

Applicability Analysis of the HSPF Model for the Management of Total Pollution Load Control at Tributaries (지류총량관리를 위한 HSPF 모형의 적용성 분석)

  • Song, Chul Min;Kim, Jung Soo;Lee, Min Sung;Kim, Seo Jun;Shin, Hyung Seob
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • The total maximum daily load (TMDL) implemented in Korea mainly manages the mainstream considering a single common pollutant and river discharge, and the river system is divided into unit watersheds. Changes in the water quality of managed rivers owing to the water quality management in tributaries and unit watersheds are not considered when implementing the TMDL. In addition, it is difficult to consider the difference in the load of pollutants generated in the tributary depending on the conditions of the water quality change in each unit watershed, even if the target water quality was maintained in the managed water system. Therefore, it is necessary to introduce the total maximum load management at tributaries to manage the pollution load of tributaries with a high degree of pollution. In this study, the HSPF model, a watershed runoff model, was applied to the target areas consisting of 53 sub-watersheds to analyze the effect of water quality changes the in tributaries on the mainstream. Sub-watersheds were selected from the three major areas of the Paldang water system, including the drainage basins of the downstream of the South Han-River, Gyeongan stream, and North Han-River. As a result, BOD ranged from 0.17 mg/L to 4.30 mg/L, and was generally high in tributaries and decreased in the downstream watershed. TP ranged from 0.02 mg/L - 0.22 mg/L, and the watersheds that had a large impact on urbanization and livestock industry were high, and the North Han-River basin was generally low. In addition, a pollution source reduction scenario was selected to analyze the change in water quality by the amount of pollution load discharged at each unit watershed. The reduction rate of BOD and TP according to the scenario changes was simulated higher in the watershed of the downstream of the North Han-River and downstream and midstream of the Gyeongan stream. It was found that the benefits of water quality reduction from each sub-watershed efforts to improve water quality are greatest in the middle and downstream of each main stream, and it is judged that it can be served as basic data for the management of total tributaries.

Analysis of Nitrogen and Phosphorus Benthic Diffusive Fluxes from Sediments with Different Levels of Salinity (염분농도에 따른 호소 퇴적물 내 질소 및 인 용출 특성 분석)

  • Seulgi Lee;Jin Chul Joo;Hee Sun Moon;Dong Hwi Lee;Dong Jun Kim;Jiwon Choi
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.3
    • /
    • pp.85-96
    • /
    • 2023
  • The study involved the categorization of domestic lakes located in South Korea into three groups based on their salinity levels: upstream reservoirs with salinity less than 0.3 psu, estuarine reservoirs with salinity ranging from 0.3 to 2 psu, and brackish lagoons with salinity exceeding 2 psu. Subsequently, the research assessed variations in the concentrations of total nitrogen (T-N) and total phosphorus (T-P) in the sediment of these lakes using statistical analysis, specifically one-way analysis of variance (ANOVA). Additionally, a laboratory core incubation test was conducted to investigate the benthic nutrient fluxes in Songji lagoon (salinity: 11.80 psu), Ganwol reservoir (salinity: 0.73 psu), and Janggun reservoir (salinity: 0.08 psu) under both aerobic and anoxic conditions. The findings revealed statistically significant differences in the concentrations of T-N and T-P among sediments in the lakes with varying salinity levels (p<0.05). Further post-hoc analysis confirmed significant distinctions in T-N between upstream reservoirs and estuarine reservoirs (p<0.001), as well as between upstream reservoirs and brackish lagoons (p<0.01). For T-P, a significant difference was observed between upstream reservoirs and brackish lagoons (p<0.01). Regarding benthic nutrient fluxes, Ganwol Lake exhibited the highest diffusive flux of NH4+-N, primarily due to its physical characteristics and the inhibition of nitrification resulting from its relatively high salinity. The flux of NO3--N was lower at higher salinity levels under aerobic conditions but increased under anoxic conditions, attributed to the impact of salinity on nitrification and denitrification. Additionally, the flux of PO43--P was highest in Songji Lake, followed by Ganwol Lake and Janggun Reservoir, indicating that salinity promotes the diffusive flux of phosphate through anion adsorption competition. It's important to consider the influence of salinity on microbial communities, growth rates, oxidation-reduction processes, and nutrient binding forms when studying benthic diffusive nutrient fluxes from lake sediments.

Analysis of Precision of Interpolation of Reservoir bed Through Comparison of Data Acquired by Using UAV and Echo Sounder (UAV와 Echo Sounder 취득 자료의 비교를 통한 저수지 하상의 공간 보간별 정확도 분석)

  • Roh, Tae-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.85-99
    • /
    • 2020
  • Reservoir is an important infrastructure of our society because it can store immense amount of water for various usages - manufacturing, agriculture, drinking, power generation, tourism etc. For maintenance of reservoir, various efforts in administrative and technological aspects are periodically conducted and monitoring the conditions of reservoir bed is the first priority for maintenance of reservoir. To check the conditions of reservoir bed, we measured depth of reservoir by using echo sounder, which is relatively reliable, prior to discharging of stored water and surveyed topography of reservoir by using UAV after discharging of water. Then, we conducted interpolation of measured depth of water by means of inverse distance weighting interpolation, Kriging interpolation, minimum curvature interpolation and radial basis function interpolation and calculated the volume of reservoir for each interpolation method. We compared the calculated volume of reservoir with the volume of water calculated by UAV after discharging of water and found the following results: First, as results of the above processes, we found that the Kriging interpolation was 97% correct in measurement of the volume of reservoir. Second, as results of comparison of differences between topographical areas and interpolated areas after selection of cross section for comparison, Kriging interpolation was found to have the most similar configuration with the topographical configuration by showing the least difference in the area of cross section. Therefore, it is determined that the optimal modeling of reservoir bed with the water depth data measured by echo sounder shall provide basic information for efficient maintenance of reservoir.

Analysis of Hydraulic Effect by River Dredging in a Meandering Channel (하도준설이 사행하천에 미치는 수리학적 영향 분석)

  • KIM, Tae-Hyeong;KIM, Byung-Hyun;HAN, Kun-Yeun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.14-30
    • /
    • 2015
  • This paper attempted to analyze the hydraulic effects that the dredging can take as an alternative to reduce possible damages of flooding due to the overflow of river levee in meandering rivers, where riverbed aggradation, seepage and erosion may occur. In order to make a hydraulic analysis in a section of meandering rivers, a two-dimensional hydraulic analysis model, RMA-2, was selected. The GIS was applied to construct two-dimensional finite element grids to consider the hydraulic conditions before and after dredging. The water surface elevations, depths, velocities, and tractive forces were compared before and after the dredging. The difference of water surface elevation between the inside and outside of river was turned out to be the maximum value of 0.58m under the design flood condition. It could be evaluated that the tractive force at the bank decreased about 42 to 67% on average for all the sections. These results could give valuable information that the dredging of the stream channel at the meandering sections decreased the risk of overflow, seepage and erosion of the banks. The methodologies given in this study will contribute to mitigating the flood damages in the surrounding farmlands.

Estimating the compound risk integrated hydrological / hydraulic / geotechnical uncertainty of levee systems (수문·수리학적 / 지반공학적 불확실성을 고려한 제방의 복합위험도 산정)

  • Nam, Myeong Jun;Lee, Jae Young;Lee, Cheol Woo;Kim, Ki Young
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.4
    • /
    • pp.277-288
    • /
    • 2017
  • A probabilistic risk analysis of levee system estimates the overall level of flood risk associated with the levee system, according to a series of possible flood scenarios. It requires the uncertainty analysis of all the risk components, including hydrological, hydraulic and geotechnical parts computed by employing MCMC (Markov Chain Monte Carlo), MCS (Monte Carlo Simulation) and FOSM (First-Order Second Moment), presents a joint probability combined each probability. The methodology was applied to a 12.5 km reach from upstream to downstream of the Gangjeong-Goryeong weir, including 6 levee reaches, in Nakdong river. Overtopping risks were estimated by computing flood stage corresponding to 100/200 year high quantile (97.5%) design flood causing levee overflow. Geotechnical risks were evaluated by considering seepage, slope stability, and rapid drawdown along the levee reach without overflow. A probability-based compound risk will contribute to rising effect of safety and economic aspects for levee design, then expect to use the index for riverside structure design in the future.

Development of Safety Training Delivery Method Using 3D Simulation Technology for Construction Worker (건설현장 작업자를 위한 3차원 시뮬레이션 바탕의 안전 교육전달 매체 개발)

  • Ahn, Sungjin;Park, Young Jun;Park, Tae-Hwan;Kim, Tae-Hui
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.621-629
    • /
    • 2015
  • Construction worker safety and safety training continue to be main issues in the construction industry. In order to promote safety awareness among workers, it is imperative to develop a more effective and efficient safety training. This study compared two methods in construction worker safety training: 1) a conventional lecture and 2) 3D simulation through Building Information Modeling. Both training methods included the same contents, a selection of safety standard and guide suggested by Occupational Safety and Health Agency and the Korea Occupational Safety and Health Agency; the contents were then produced into two types of training methods. A survey was conducted targeting on safety managers, in which the managers evaluated lifelikeness, active learning and enjoyment that each of training methods can promote. The results of the survey showed that innovative method using 3D simulation was more effective than conventional lecture method in terms of its lifelikeness, active learning and enjoyment. This study will provide implications that innovative method using the virtual reality is more effective than conventional lecture method.

Large-Scale Slope Stability Analysis Using Climate Change Scenario (2): Analysis of Application Results (기후변화 시나리오를 이용한 광역 사면안정 해석(2): 결과분석)

  • Oh, Sung-Ryul;Lee, Gi-Ha;Choi, Byoung-Seub;Lee, Kun-Hyuk;Kwon, Hyun-Han
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.3
    • /
    • pp.1-19
    • /
    • 2014
  • This study aims to assess the slope stability variation of Jeonbuk drainage areas by RCM model outputs based on A1B climate change scenario and infinite slope stability model based on the previous research by Choi et al.(2013). For a large-scale slope stability analysis, we developed a GIS-based database regarding topographic, geologic and forestry parameters and also calculated daily maximum rainfall for the study period(1971~2100). Then, we assess slope stability variation of the 20 sub-catchments of Jeonbuk under the climate change scenario. The results show that the areal-average value of safety factor was estimated at 1.36(moderately stable) in spite of annual rainfall increase in the future. In addition, 7 sub-catchments became worse and 5 sub-catchments became better than the present period(1971~2000) in terms of safety factor in the future.

Groundwater Recharge and Discharge in the Urban-rural Composite Area (도농복합지역 지하수 함양과 배출에 대한 연구)

  • Lee, Byung-Sun;Hong, Sung-Woo;Kang, Hee-Jun;Lee, Ji-Seong;Yun, Seong-Taek;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.2
    • /
    • pp.37-46
    • /
    • 2012
  • This study was conducted to identify groundwater recharge and discharge amounts of a representative urban-rural composite area located in Yongin city, Kyounggi-do, Korea. Groundwater recharge would be affected by mainly two processes in the study area: rainfall and leakage from public water pipelines including water-supply and sewage system. Groundwater recharge rate was estimated to be 13.5% by applying annual groundwater level data from two National Groundwater Monitoring Stations to the master regression curve method. Subsequently, the recharge amounts were determined to be $13,253{\times}10^3m^3/yr$. Leakage amounts from water-supply and sewage system were estimated to be $3,218{\times}10^3$ and $5,696{\times}10^3m^3/yr$, respectively. On the whole, a total of the recharge amounts was $22,167{\times}10^3m^3/yr$, of which 60% covers rainfall recharge and 40% pipeline leakage. Groundwater discharge occurred through three processes in the composite area: baseflow, well pumping, and discharge from urban infrastructure including groundwater infiltration into sewage pipeline and artificial extraction of groundwater to protect underground facilities from submergence. Discharge amounts by baseflow flowing to the Kiheung agricultural reservoir and well pumping were estimated to be $382{\times}10^3$ and $1,323{\times}10^3m^3/yr$, respectively. Occurrence of groundwater infiltration into sewage pipeline was rarely identified. Groundwater extraction amounts from the Bundang subway line as an underground facility were identified as $714{\times}10^3m^3/yr$. Overall, a total of the discharge amounts was determined to be $2,419{\times}10^3m^3/yr$, which was contributed by 29% of artificial discharge. Even though groundwater budget of the composite area was identified to be a surplus, it should be managed for a sound groundwater environment by changing deteriorated pipelines and controlling artificial discharge amounts.

Recognition of Stakeholders Regarding Building-Related Landscape Systems (대지의 조경 제도에 대한 관련 주체의 인식 비교 분석)

  • Kim, Yong-Gook;Lee, Sang-Min
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.3
    • /
    • pp.79-91
    • /
    • 2018
  • This study proposes the difference of awareness and improvement plan of building-related landscape systems through a cognition survey of building owners, public officials, and experts. The main results are as follows. First, all three groups are highly aware of the need to secure urban green spaces. Even if private property rights are restricted, the level of awareness that green space should be secured for public benefit is high. The level of interest in the building-related landscape system was also surveyed to a greater degree. Second, the survey respondents, including the building owner group, answered that there is a need to strengthen the building-related landscape area standards. It can be seen that there is a need to revise the relaxation of the building-related landscape area standards through an amendment of the Building Ordinance in many local governments. Third, most municipalities are not equipped with an organizational system that can promote the work of building-related landscape. It is necessary to newly hire civil servants for landscape design, maintenance, and management specialization, or to expand co-working relationships with related departments. Fourth, building owners are interested in building-related landscape, but they do not know specific management methods and leave the landscape space. The municipality needs to offer guidance on landscape architectural design and construction methods that the building owners can easily follow and to support the voluntary landscape space management on the part of the local residents by supporting the trees. Fifth, in order to improve the building-related landscape system, it is necessary to verify the effect of the building-related landscape and spread a consensus. At the government level, in order to enable building owners to recognize the value of the landscape space in connection with an urban regeneration project, it is necessary to present an example of an excellent building-related landscape installation via a pilot project.

Design and Implementation of an Efficient Web Services Data Processing Using Hadoop-Based Big Data Processing Technique (하둡 기반 빅 데이터 기법을 이용한 웹 서비스 데이터 처리 설계 및 구현)

  • Kim, Hyun-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.726-734
    • /
    • 2015
  • Relational databases used by structuralizing data are the most widely used in data management at present. However, in relational databases, service becomes slower as the amount of data increases because of constraints in the reading and writing operations to save or query data. Furthermore, when a new task is added, the database grows and, consequently, requires additional infrastructure, such as parallel configuration of hardware, CPU, memory, and network, to support smooth operation. In this paper, in order to improve the web information services that are slowing down due to increase of data in the relational databases, we implemented a model to extract a large amount of data quickly and safely for users by processing Hadoop Distributed File System (HDFS) files after sending data to HDFSs and unifying and reconstructing the data. We implemented our model in a Web-based civil affairs system that stores image files, which is irregular data processing. Our proposed system's data processing was found to be 0.4 sec faster than that of a relational database system. Thus, we found that it is possible to support Web information services with a Hadoop-based big data processing technique in order to process a large amount of data, as in conventional relational databases. Furthermore, since Hadoop is open source, our model has the advantage of reducing software costs. The proposed system is expected to be used as a model for Web services that provide fast information processing for organizations that require efficient processing of big data because of the increase in the size of conventional relational databases.