• Title/Summary/Keyword: Civil engineering work

Search Result 2,037, Processing Time 0.028 seconds

Modeling shear behavior of reinforced concrete beams strengthened with externally bonded CFRP sheets

  • Khan, Umais;Al-Osta, Mohammed A.;Ibrahim, A.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.125-142
    • /
    • 2017
  • Extensive research work has been performed on shear strengthening of reinforced concrete (RC) beams retrofitted with externally bonded carbon fiber reinforced polymer (CFRP) in form of strips. However, most of this research work is experimental and very scarce studies are available on numerical modelling of such beams due to truly challenging nature of modelling concrete shear cracking and interfacial interaction between components of such beams. This paper presents an appropriate model for RC beam and to simulate its cracking without numerical computational difficulties, convergence and solution degradation problems. Modelling of steel and CFRP and their interfacial interaction with concrete are discussed. Finally, commercially available non-linear finite element software ABAQUS is used to validate the developed finite element model with key tests performed on full scale T-beams with and without CFRP retrofitting, taken from previous extensive research work. The modelling parameters for bonding behavior of CFRP with special anchors are also proposed. The results presented in this research work illustrate that appropriate modelling of bond behavior of all the three types of interfaces is important in order to correctly simulate the shear behavior of RC beams strengthened with CFRP.

Procedure for the correct placement of Long-Thread Short-Thread couplers in mechanical connections of reinforcing bars

  • Enrique Hernandez-Montes;Fouzia Larbi-Chaht;Mohamed Mouli;Lahouari Mammar;Sadek Mahdjouba;Ahmed M. Mohamed;Abdelkader Medjahed;Ahmed Messaoud-Djebara;Luisa Maria Gil-Martin
    • Advances in concrete construction
    • /
    • v.16 no.2
    • /
    • pp.91-96
    • /
    • 2023
  • The present work provides a new solution to both the correct execution and quality control of straight thread couplers for reinforcing bars under monotonic loading conditions. A random survey on already constructed couplers together with a new mechanical model, adjusted with an experimental campaign, led us to present this new procedure in reinforced concrete construction. Formulation and methodology for a correct placement of straight thread couplers is presented.

A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates

  • Boussoula, Abderrafik;Boucham, Belhadj;Bourada, Mohamed;Bourada, Fouad;Tounsi, Abdeldjebbar;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.197-218
    • /
    • 2020
  • In this work, thermomechanical flexural analysis of functionally graded material sandwich plates with P-FGM face sheets and E-FGM and symmetric S-FGM core is performed by employing a nth-order shear deformation theory. A novel type of S-FGM sandwich plates, namely, both P-FGM face sheets and a symmetric S-FGM hard core are considered. By employing only four unknown variables, the governing equations are obtained based on the principle of virtual work and then Navier method is used to solve these equations. Analytical solutions are deduced to compute the stresses and deflections of simply supported S-FGM sandwich plates. The effects of volume fraction variation, geometrical parameters and thermal load on thermomechanical flexural behavior of the symmetric FGM sandwich plates are investigated.

Integrating a Machine Learning-based Space Classification Model with an Automated Interior Finishing System in BIM Models

  • Ha, Daemok;Yu, Youngsu;Choi, Jiwon;Kim, Sihyun;Koo, Bonsang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.4
    • /
    • pp.60-73
    • /
    • 2023
  • The need for adopting automation technologies to improve inefficiencies in interior finishing modeling work is increasing during the Building Information Modeling (BIM) design stage. As a result, the use of visual programming languages (VPL) for practical applications is growing. However, undefined or incorrect space designations in BIM models can hinder the development of automated finishing modeling processes, resulting in erroneous corrections and rework. To address this challenge, this study first developed a rule-based automated interior finishing detailing module for floors, walls, and ceilings. In addition, an automated space integrity checking module with 86.69% ACC using the Multi-Layer Perceptron (MLP) model was developed. These modules were integrated into a design automation module for interior finishing, which was then verified for practical utility. The results showed that the automation module reduced the time required for modeling and integrity checking by 97.6% compared to manual work, confirming its utility in assisting BIM model development for interior finishing works.

Behavior of CFRP strengthened RC multicell box girders under torsion

  • Majeed, Abeer A.;Allawi, Abbas A.;Chai, Kian H.;Badaruzzam, Hameedon W. Wan
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.397-406
    • /
    • 2017
  • The use of fiber reinforced polymer (FRP) for torsional strengthening of reinforced concrete (RC) single cell box beams has been analyzed considerably by researchers worldwide. However, little attention has been paid to torsional strengthening of multicell box girders in terms of both experimental and numerical research. This paper reports the experimental work in an overall investigation for torsional strengthening of multicell box section RC girders with externally-bonded Carbon Fiber Reinforced Polymer CFRP strips. Numerical work was carried out using non-linear finite element modeling (FEM). Good agreement in terms of torque-twist behavior, steel and CFRP reinforcement responses, and crack patterns was achieved. The unique failure modes of all the specimens were modeled correctly as well.

ROBOTICS AND AUTOMATION IN CONSTRUCTION INDUSTRY

  • Younus Khan;G. Chandra Sekhar Reddy;V.S.S. Kumar
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.527-532
    • /
    • 2005
  • The construction industries are facing problems of productivity, quality of work, safety, and the completion of projects in time. In construction industry a worker is exposed to hazardous environment, and has to do more physical work, effecting his health and also productivity. The automation and robotics can offer solution to many problems of the industry. In the past the major barrier to construction automation is the lack of electronic components and systems. This is solved now with the development of information technology, and the current obstacle is the high cost of automated systems, shortage of public money for R&D, and problems of acceptance. The robots employed in construction have followed the same concept as those employed in manufacturing. However, construction industry requires a different kind of robot compared to manufacturing Industry. The robots are stationery and product moves along the assembly line in manufacturing sector, but construction robots have to move about the site because buildings are stationary and of large size. The construction robots must function in adverse weather conditions, including variation in humidity, and temperature and increase the overall construction productivity rate. The major objective of the paper is to review the existing applications of building robots and to assess their implementation in building industry. A case study is considered for the implementation of robots for the painting work of the University Building at Saifabad PG College of Science, Hyderabad, India.

  • PDF

Field Applicability of Augmented Reality Technology by Marker Mapping for Construction Project (Focused on Measurement Process of Rebar Work) (마커방식 증강현실기법의 건설현장 적용성 연구 (철근배근 검측업무 사례적용))

  • Kim, SunYoung;Kim, HyeonSeung;Moon, HyounSeok;Kang, LeenSeok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2509-2518
    • /
    • 2013
  • Augmented reality (AR) technology visualizes a real type object that cannot simulate in virtual reality technology by overlapping a virtual object and real object in a computer system. This study suggests a methodology and prototype system for applying AR system to rebar distribution work in a civil engineering project. Rebar work in civil engineering project is a representative activity that is progressed by empirical approach of skilled labor rather than formalized manual. AR technology improves the constructability of rebar work because AR tool can identify missing rebars and different rebars comparing with the drawings. AR system developed in this study can enhance the understanding of rebar work using 3D modeling with real image of construction site and save construction cost by reducing reconstruction work.

A Compensation Method and Comparative Analysis of Historical Unit Price Considering Work Types for Large and Small-Scale Projects (공종별 특성을 고려한 대·소규모 공사의 실적공사비 비교 및 보정방안)

  • Hong, Sung Ho;Lee, Dong Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.293-303
    • /
    • 2014
  • Recent historical unit price is presented by the Korea Institute of Construction Technology (KICT) and it is analyzed by data from large-scale projects. Therefore it has problem applying to small-scale projects. To indicate the problem, the study compared historical unit price of large-case project and small-case project in the case of civil engineering work, building construction, and mechanical facility work. As a result, average historical unit price of small-scale project was 26.6% higher than large-scale project. On the other hand, difference on the labor cost was 18.4%, difference on material cost and overheads were 8.18%. Moreover, the study proposed compensation method to correct to apply recent historical unit price to small-scale project.

A STUDY ON SELECTING OPTIMAL HAUL ROUTES OF EARTHMOVING MACHINE

  • Han-Seong Gwak;Chang-Yong Yi;Chang-Baek Son;Dong-Eun Lee
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.513-516
    • /
    • 2013
  • Earthmoving equipment's haul-route has a great influence on the productivity of the earth work operation. Haul-route grade is a critical factor in selecting the haul-route. The route that has low grade resistance contributes to increase machine travel speed and production. This study presents a mathematical model called "Hauling-Unit Optimal Routes Selecting system" (HUORS). The system identifies optimal path that maximize the earth-work productivity. It consists of 3 modules, i.e., (1) Module 1 which inputs site characteristic data and computes site location and elevation using GIS(Geographical Information System); (2) Module 2 which calculates haul time; (3) Module 3 which displays an optimum haul-route by considering the haul-route's gradient resistances (i.e., from the departure to the destination) and hauling time. This paper presents the system prototype in detail. A case study is presented to demonstrate the system and verifies the validity of the model.

  • PDF

Identifying the Organizational Competency Factor for Implementing AWP (Advanced Work Packaging) in perspective of Korean EPC Contractor (AWP (Advanced Work Packaging) 체계 도입을 위한 국내건설기업의 필요 조직역량 도출 연구)

  • Moon, Soohwan;Yun, Sungmin;Park, Chan Young;Cho, Tae Sang;Han, Seung Heon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.3
    • /
    • pp.20-27
    • /
    • 2020
  • EPC contractors have made continuous efforts to develop integrated project execution methods to improve the performance of industrial plant project. In particular, the concept of Advanced Work Packaging (AWP) has been recently presented by readjusting the existing "Work Packaging" concept as part of the integrated project execution method from the project life-cycle perspective. However, Korean EPC contractors are still unfamiliar with the AWP implementation. Thus, this study aims to identify the organizational competency factor for effective implementation of AWP. For this purpose, first, this study identified the expected risks in AWP project and the 29 organizational competency factors to manage risks. Second, five experts verified the suitability of factors and supplemented the factors. Finally, 37 factors were identified as organizational competency factors for implementing AWP.