• Title/Summary/Keyword: Civil construction

Search Result 8,187, Processing Time 0.039 seconds

Ground Stability Evaluation of Volcanic Rock Area in Jeju according to the Loading Conditions (하중조건을 고려한 제주 화산암지대의 지반 안정성 평가)

  • Han, Heuisoo;Baek, Yong
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.199-209
    • /
    • 2021
  • This paper is written to evaluate the ground stability according to the construction of Jeju 2nd airport. Sumgol is the unique characteristics of Jeju soil, which is used to evaluate the ground stability of the airport. The research contents are as follows. 1) The geotechnical characteristics for Jeju 2nd airport was analyzed, and the Sumgol and geotechnical properties were calculated based on the existing geotechnical survey data. 2) The divided sections of Jeju 2nd airport were modeled to evaluate the ground stability after determining the section (runway and airport facilities) which have the different soil and loading properties. 3) The stability and deformation ranges of the airport ground were identified through numerical analysis. The entire airport was divided into three sections to analyze the stability of Jeju 2nd airport, and calculated the stresses, settlements, and strains of each section by computer numerical analysis modeling. For modeling, the ground and load conditions were examined, also pavement conditions for each airport ground section were examined. From the analysis results of each section according to the ground conditions, the vertical settlements were analyzed as 0.11~0.18 m and the sum of effective stress and pore water pressure were 92.75~445 kPa. These results were made by taking into account the Sumgol of the bottom ground without reinforcement, also the soil strength parameters of the airport ground were reduced for computer modeling, Therefore, if proper reinforcements are applied to the ground of Jeju 2nd airport, sufficient airport ground stability can be secured.

Experimental Evaluation of the Effect of the Mixing Design Factors of the Cementitious Composite for 3D Printer on the Printing Quality (3D 프린터용 시멘트 복합체의 배합요인에 따른 출력 품질의 실험적 평가)

  • Seo, Ji-Seok;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.89-96
    • /
    • 2022
  • In this paper, to evaluate the output quality of the cementitious composite mixture for printing with the ME method for construction 3D printer, visual inspection of the output appearance and the dimensional error rate, compressive strength and flexural strength of the output were measured. As a result of the test, the mixing design with excellent output appearance was P1-2, P1-4, P2-5, P2-6, and the mixing design with good output appearance was P0-1, P1-1, P1-3, P1-6, P1-7 and P2-4. Of these mixing designs, P0-1 and P2-6 had the lowest dimensional error rates As a result of evaluating the compressive strength and flexural strength of the various mixing designs, the Mixing design with excellent output designs showed good mechnical properties. However, mixing designs with excellent mechanical properties does not necessarily have excellent output quality. Therefore, in order to accurately evaluate the output quality, it is judged that visual inspection and dimensional error rate inspection should be performed first, and then the mechanical characteristics should be reviewed.

Investigation of the Electromechanical Response of Smart Ultra-high Performance Fiber Reinforced Concretes Under Flexural (휨하중을 받는 스마트 초고강도 섬유보강 콘크리트의 전기역학적 거동 조사)

  • Kim, Tae-Uk;Kim, Min-Kyoung;Kim, Dong-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.57-65
    • /
    • 2022
  • This study investigated the electromechanical response of smart ultra-high performance fiber reinforced concretes (S-UHPFRCs) under flexural loading to evaluate the self-sensing capacity of S-UHPFRCs in both tension and compression region. The electrical resistivity of S-UHPFRCs under flexural continuously changed even after first cracking due to the deflection-hardening behavior of S-UHPFRCs with the appearance of multiple microcracks. As the equivalent bending stress increased, the electrical resistivity of S-UHPFRCs decreased from 976.57 to 514.05 kΩ(47.0%) as the equivalent bending stress increased in compression region, and that did from 979.61 to 682.28 kΩ(30.4%) in tension region. The stress sensitivity coefficient of S-UHPFRCs in compression and tension region was 1.709 and 1.098 %/MPa, respectively. And, the deflection sensitivity coefficient of S-UHPFRCs in compression region(30.06 %/mm) was higher than that in tension region(19.72 %/mm). The initial deflection sensing capacity of S-UHPFRCs was almost 50% of each deflection sensitivity coefficient, and it was confirmed that it has an excellent sensing capacity for the initial deflection. Although both stress- and deflection-sensing capacity of S-UHPFRCs under flexural were higher in compression region than in tension region, S-UHPFRCs are sufficient as a self-sensing material to be applied to the construction field.

Analysis of the Characteristics of Liquidization Behavior of Sand Ground in Korea Using Repeated Triaxial Compression Test (반복삼축압축시험을 이용한 국내 모래지반의 액상화 거동 특성 비교)

  • Seo, Hyeok;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.493-506
    • /
    • 2021
  • Liquefaction refers to a phenomenon in which excessive pore water pressure occurs when a dynamic load such as an earthquake rapidly acts on a loose sandy soil saturated with soil, and the ground loses effective stress and becomes liquefied. The indoor repeated test for liquefaction evaluation can be confirmed through the repeated triaxial compression test and the repeated shear test. In this regard, this study tried to confirm the liquefaction resistance strength according to the relative density and particle size distribution of sand using the repeated triaxial compression test. As a result of the experiment, it was confirmed that the liquefaction resistance strength increased as the relative density increased regardless of the soil classification, and the liquefaction resistance strength according to the particle size distribution of the sand was confirmed that the liquefaction resistance strength of the SP sample close to SW was significantly higher. In addition, as a result of analyzing 30% of fine powder compared to 0% of fine powder, as the relative density increased to 40~70%, the liquefaction resistance strength decreased by 5~20%, and the domestic weathered soil ground had a fine liquefaction resistance strength compared to Jumunjin standard sand. When the minute was 10%, it was measured to be 30% or more, and when the fine particle was 30%, it was measured to be less than 50%.

Instrumentation Management of the Deep Soft Ground with Dredged Clay Reclaimed in the Upper (준설점토가 상부에 매립된 대심도 연약지반 계측관리)

  • Jung, Na-Young;Kang, Seung-Chan;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.67-78
    • /
    • 2022
  • In this study, the measurement results of the coastal deep soft ground buried in the upper part of the dredged clay were analyzed and compared with the current specification standards. Based on the results, a suitable proposal was suggested for the selection, installation, data arrangement, and analysis of each instrument used in the deep soft ground improvement construction. The pore water pressure meter has a range of 1.5 times or more of the expected measurement range, considering the field conditions of the soft ground. The groundwater level meter installed in the horizontal drainage layer checks the change in the groundwater level during the embanking as well as the performance of the catchment well and the horizontal drainage layer. Therefore, it is important to manage so that the groundwater level exists inside the horizontal drainage layer during embanking. It is enough to install the inclinometer in the gravel layer below the soft ground or weathered rock with an N value of 40 or more for the deep soft ground. It seems desirable to install a screw type for differential settlement meter. However, the screw type should not settle due to its own weight. Considering that it is a dredged landfill where subsidence occurs significantly, it is sufficient to manage the tolerance of leveling at about 10 mm (L is the one-way distance (km)).

Analysis of Cold Air Flow Characteristics according to Urban Spatial Types to Construct a Wind Road - Focused on Urban Area of Changwon - (바람길 조성을 위한 도시공간유형별 찬공기 유동 특성 분석 - 창원시 도시지역을 중심으로 -)

  • LEE, Su-Ah;SONG, Bong-Geun;PARK, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.2
    • /
    • pp.30-47
    • /
    • 2022
  • This study analyzed the characteristics of cold air flow according to spatial types in urban areas of Changwon-si, Gyeongsangnam-do. The spatial types were classified by cluster analysis considering the land use map, building information, and topographic characteristics produced on the Changwon biotope map. The amount of cold air and wind speed were derived by KLAM_21 modeling. As a result, spatial types were classified into a total of 14 types considering the density and height of buildings, land use types, and topographic characteristics. Cold air flow was found to generate cold air in the valley of the forest area outside urban area, move through roads and open spaces, and accumulate in the low-lying national industrial complex, and then spread cold air throughout the urban areas. There was a lot of cold air flow in the tall building area, and the cold air accumulation was less in the slope and ridge areas. The results of this study were able to understand the characteristics of cold air flow according to building density, land use type, and topography, which will be usefully used as basic data for urban wind road construction to mitigate climate and improve air quality in urban areas.

Analysis of Weathering Sensitivity by Swelling of Domestic Highway Sites (국내 고속도로현장의 스웰링에 의한 풍화민감도 분석)

  • Jang, Seokmyung;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.3
    • /
    • pp.15-22
    • /
    • 2022
  • This study aims to observe the swelling representative rocks in Korea and to suggest improvements in the use of test methods and prior analysis in relation to the weathering of rocks. The swelling test and analysis were performed on the drilling cores obtained for the ground investigation at the domestic highway construction site. For the method of determining the absorption expansion index of rocks, the method proposed in "Standard Methods for Sample Collection and Specimen Preparation" of ISRM and Korean Rock Engineers Standard Rock Test Method was used. The specimen for the measurement of the expansion displacement was cylindrical with a height of 10 cm and a diameter of 5 cm. The existing swelling analysis method evaluates the sensitivity to weathering by using the maximum expansion displacement, but since the classification by bedrock grade is unclear, it is reasonable to use the rate of change of the expansion displacement according to the immersion time. It is necessary to conduct an experiment to distinguish between weathering and fault deterioration. In addition, long-term weathering prediction technology for each cancer type is needed through the expansion displacement analysis of the chemical weathering stage.

Conceptual Approaches to Training Specialists Using Multimedia Technologies

  • Shchyrbul, Oleksandr;Babalich, Viktoriya;Mishyn, Sergii;Novikova, Viktoriia;Zinchenko, Lina;Haidamashko, Iryna;Kuchai, Oleksandr
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.123-130
    • /
    • 2022
  • Modernization of the educational sector requires globalization, democratization, and the transition to an information technology society. The main goal of education at the present stage is to solve the problem of ensuring the priority of the development of education and science. In modern conditions, the quality of training of qualified specialists is becoming particularly relevant. The great role of teacher education is emphasized by its main goal, which is to train specialists who can ensure the versatile and innovative development of a person as a person and the highest value of society, its mental, physical and aesthetic abilities, high moral qualities, and, consequently, the enrichment on this basis of the intellectual, creative and cultural potential of the people. Among the strategic tasks of modernizing higher education is to ensure informatization of the educational process and access to International Information Systems. The essence of the concept of multimedia is clarified. In the context of media education, multimedia lists a number of functions: informational, interpretive, cultural, entertainment, and educational. The need to meet the needs outlined in the article in the conditions of informatization of the educational process requires the teacher to have knowledge and skills in the field of multimedia pedagogical technologies, knowledge of advanced methods and means of modern science. It is considered what relevant concepts of media education have been developed and are being developed in Ukraine and form an important basis for the modernization of education, which will contribute to the construction of an information society in the country and the formation of civil society. Distance learning is considered - the most democratic form of education that allows broad segments of society to get an education. Distance learning methods are used in higher education institutions, in school education, in the system of advanced training of teachers, in the system of training managerial personnel.

A Review of the Deterioration and Damage of the Top Flange of the Highway PSC Box Girder Bridge based on the Condition Assessment Results (상태평가 결과 기반 고속도로 PSC Box 거더교 상부플랜지 열화·손상 실태 고찰)

  • Ku, Young-Ho;Han, Sang-Mook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.23-32
    • /
    • 2022
  • Although PSCB girder bridges account for 4% of the bridges in use on highways, they do not account for much, but 98% of PSCB girder bridges are 1st type and 2nd type of bridge. Also, the total length of the PSCB girder bridge is 16% (192km) of the total length of the highway bridge. Thus, the PSCB girder bridge can be one of the bridge types where maintenance is important. In order to analyze the damage types of PSCB girder bridges, a detailed analysis was conducted by selecting 62 places (477 spans) precision safety diagnosis reports considering ratio of the construction method and snow removal environment exposure class. Analysis of report and a field investigation was conducted, and as a result, most of the causes of deterioration damage were caused by rainwater (salt water) flowing into the bridge pavement soaking in between the top flange and the interface. After concrete slab deteriorate occurred then bridge pavement cracking and breaking increased and exfoliation of concrete occurred by corrosion and expansion of the reinforcing bars occurred. In addition, the cause of cracks in the longitudinal direction on the bottom of the top flange is considered to be cracks caused by restrained drying shrinkage. In conclusion, for reasonable maintenance considering the characteristics of PSCB girder bridges, it should be suggested in the design aspect that restrained drying shrinkage crack on top flange. Also, it is believed that differentiated maintenance method should be proposed according to snow removal environment exposure class.

A Study on Shrinkage Crack of Steel Composite Concrete Box Structure (Transfer Girder) (강합성 콘크리트 박스구조물(트랜스퍼 거더)의 건조수축 균열에 대한 연구)

  • Choi, Jung-Youl;Kim, Dae-Ill
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.685-691
    • /
    • 2022
  • This study was based on the steel composite concrete box structure (Transfer girder) which was installed to support the skyscrapers directly above the subway line. In this study, it was analytically proved that the cause of cracks on the steel composite concrete box structure were the shrinkage cracks by comparing the results of crack investigation and numerical analysis. As the results, it was found that the internal temperature difference between concrete and steel members occurred according to the shape of the steel frame embedded in concrete, the location of vertical stiffener, and the closed section area. The narrower spacing of vertical stiffener was occurred the internal temperature concentration of the structure and the temperature difference increased. And the location of higher thermal strain and temperature were similar to the location of actual cracks by the visual inspection. Therefore, the internal temperature concentration parts were formed according to the presence and spacing of the vertical stiffeners and the inspection passage in the central part of the structure. The shrinkage cracks were occurred by the restrained of temperature expansion and contraction of the concrete. As the results of this study, it was important to separate and manage the non-structural cracks caused by shrinkage and the structural cracks in the maintenance of serviced steel-composite concrete structures.