• 제목/요약/키워드: Civil code

Search Result 1,178, Processing Time 0.024 seconds

Buyer's Right of Rejection and Revocation of Acceptance under the Uniform Commercial Code Compared with English Law (UCC상 매수인의 물품거절 및 승낙 철회권의 영국법과의 비교연구)

  • Lee, Byung-Mun
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.28
    • /
    • pp.3-36
    • /
    • 2005
  • Most legal systems provides the aggrieved buyer with a right to put an end to the contract. Unlike Civil Law systems, the right is rather complicated and uncertain in Common Law systems because they do not sharply distinguish between a refusal which amounts merely to a defence in the nature of the exceptio non adimpleti contractus, and one which is intended to abrogate the aggrieved party's obligations completely and to seek restitution of what he has already performed. That is, they do not draw any sharp distinction between the right of rejection or revocation and the right to put an end to the contract. This explains why the right to put an end to the contract under Civil Law systems are often compared with the right of rejection or revocation under Common Law systems in most academic papers. Having said that, this article describes and analyzes in detail the relevant UCC rules to the buyer's right of rejection and revocation, particularly the rules on the requirements for the right of rejection or revocation. This is for the purpose of providing legal advice to our sellers residing either in U.S.A. or in Korea who plan to enter into U.S.A markets and take academics' interest in the buyer's right which is deemed to be unique compared to the Civil Law systems. In addition, the study attempts to compare the rules as to the right of rejection and revocation under the UCC with those of English law which are stipulated mainly in the Sale of Goods Act (1979) in a statutory form. This may help one better to understand the rules of the UCC which are mostly originated with English law and to find in what way the rules of the UCC depart from those of English law.

  • PDF

Detection of Unauthorized Facilities Occupying on the National and Public Land Using Spatial Data (공간정보 자료를 이용한 국·공유지 무단점유 시설물 탐색)

  • Lee, Jae Bin;Kim, Seong Yong;Jang, Han Me;Huh, Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.2
    • /
    • pp.67-74
    • /
    • 2018
  • This study has proposed a methodology to detect suspicious facilities that occupy national and public land by using the cadastral and digital maps. First, we constructed a spatial database of national & public land based on the cadastral maps by linking its management ledger. Using the PNU (Parcel Number) code as a key field, the data managed by different institutions are integrated into a single spatial information DB (database) and then, the use or nonuse state of each parcel is confirmed on the cadastral map. Next, we explored the suspicious facilities that existed in the unused parcel by utilizing the digital topographical map. Then, the proposed methodology was applied for various regions and tested its feasibility. Through this study, it will be possible to improve the utilization of digital maps and to manage the national and public land efficiently and economically.

Plantar foot pressure distribution depending on ground conditions and shoe type (지반조건과 신발의 종류에 따른 족저압 분포)

  • Kim, Sang-Hwan;Lee, Hye-Yoon;Kim, Yeon-Deok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2899-2905
    • /
    • 2015
  • This paper presents is a study on the pressure distribution families low in response to ground conditions. Indoor shoes, outdoor shoes, working shoes, are four categories of shoes sports shoes, has been used in the present study, Concrete to target men in their 20s of 45people wearing the 260mm(Euro Code EU40), the experiments were carried out in the sand ground. Measurement of stress and pressure at the time of walking, Techstorm company Insole System the measured toe of the foot using, foot binding, was the metatarsal, the low pressure come from Fujoku four areas measured. Depending on the shoes and ground conditions findings, the results of this study represents the distribution of other stress and pressure, is expected to be useful in the development of a wearable shoe sand soil.

New emerging surface treatment of GFRP Hybrid bar for stronger durability of concrete structures

  • Park, Cheolwoo;Park, Younghwan;Kim, Seungwon;Ju, Minkwan
    • Smart Structures and Systems
    • /
    • v.17 no.4
    • /
    • pp.593-610
    • /
    • 2016
  • In this study, an innovative and smart glass fiber-reinforced polymer (GFRP) hybrid bar was developed for stronger durability of concrete structures. As comparing with the conventional GFRP bar, the smart GFRP Hybrid bar can promise to enhance the modulus of elasticity so that it makes the cracking reduced than the case when the conventional GFRP bar is used. Besides, the GFRP Hybrid bar can effectively resist the corrosion of conventional steel bar by the GFRP outer surface on the steel bar. In order to verify the bond performance of the GFRP hybrid bar for structural reinforcement, uniaxial pull-out test was conducted. The variables were the bar diameter and the number of strands and pitch of the fiber ribs. Tensile tests showed a excellent increase in the modulus of elasticity, 152.1 GPa, as compared to that of the pure GFRP bar (50 GPa). The stress-strain curve was bi-linear, so that the ductile performance could be obtained. For the bond test, the entire GFRP hybrid bar test specimens failed in concrete splitting due to higher shear strength resulting in concrete crushing as a function of bar deformation. Investigation revealed that an increase in the number of strands of fiber ribs enhanced the bond strength, and the pitch guaranteed the bond strength of 19.1 mm diameter hybrid bar with 15.9 mm diameter of core section of deformed steel the ACI 440 1R-15 equation is regarded as more suitable for predicting the bond strength of GFRP hybrid bars, whereas the CSA S806-12 prediction is considered too conservative and is largely influenced by the bar diameter. For further study, various geometrical and material properties such as concrete cover, cross-sectional ratio, and surface treatment should be considered.

Challenges and outlooks Following to the Interoduction of adult Guardianship System (성년후견제도 시행에 따른 과제와 전망)

  • Park, Jong Ryeol
    • Journal of Digital Convergence
    • /
    • v.11 no.3
    • /
    • pp.157-164
    • /
    • 2013
  • Current in Korean Civil law, it regulates the Limited Guardianship and Specific Guardianship as an incompetent person. And as amending the Civil Law, the New Adult Guardianship System passed by the National Assembly on February 18 and it will be fully implemented from 1 July 2013. Therefore, in current law, the supplementation for various disqualifications about quasi-incompetence and incompetence is need. Because, the system of quasi-incompetence and incompetence will abolished from July 1. Thus, for the successful implementation of the Adult Guardianship System, laying the various legal groundwork and should be maintenance as soon as possible the each legislation associated with the revision of the Civil Code to fit the purpose of the New Guardianship System. So, in this paper, it will examine the several ways to amend the disqualification due to the introduction of the limited guardianship, adult guardianship system and prepare the reasonable legal model.

Developing a Work Procedure for Efficient Map Generalization (효율적인 일반화 자료처리를 위한 작업공정 개발)

  • Choi, Seok-Keun;Kim, Myung-Ho;Hwang, Chang-Sup
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.3
    • /
    • pp.73-82
    • /
    • 2003
  • This paper proposes a work procedure for generalizing large-scale digital maps ver. 2.0(1/5,000) into a small-scale digital map(1/25,000). Unlike a existent digital map, the digital map ver. 2.0 has a variety of attribute data as well as graphic data. To perform an efficient map generalization with these structural properties, we establish a work procedure as follow; firstly, delete layers which don't exist in small-scale digital map's feature code, and secondly, generalize features which have been classified into 8 layers, and finally merge 8 layers which have been generalized into 1 layer. Therefore, we expect that a work procedure which is proposed in this paper will play a fundamental role in automated generalization system and will contribute to small-scale digital mapping and thematic mapping.

  • PDF

Predicting shear capacity of NSC and HSC slender beams without stirrups using artificial intelligence

  • El-Chabib, H.;Nehdi, M.;Said, A.
    • Computers and Concrete
    • /
    • v.2 no.1
    • /
    • pp.79-96
    • /
    • 2005
  • The use of high-strength concrete (HSC) has significantly increased over the last decade, especially in offshore structures, long-span bridges, and tall buildings. The behavior of such concrete is noticeably different from that of normal-strength concrete (NSC) due to its different microstructure and mode of failure. In particular, the shear capacity of structural members made of HSC is a concern and must be carefully evaluated. The shear fracture surface in HSC members is usually trans-granular (propagates across coarse aggregates) and is therefore smoother than that in NSC members, which reduces the effect of shear transfer mechanisms through aggregate interlock across cracks, thus reducing the ultimate shear strength. Current code provisions for shear design are mainly based on experimental results obtained on NSC members having compressive strength of up to 50MPa. The validity of such methods to calculate the shear strength of HSC members is still questionable. In this study, a new approach based on artificial neural networks (ANNs) was used to predict the shear capacity of NSC and HSC beams without shear reinforcement. Shear capacities predicted by the ANN model were compared to those of five other methods commonly used in shear investigations: the ACI method, the CSA simplified method, Response 2000, Eurocode-2, and Zsutty's method. A sensitivity analysis was conducted to evaluate the ability of ANNs to capture the effect of main shear design parameters (concrete compressive strength, amount of longitudinal reinforcement, beam size, and shear span to depth ratio) on the shear capacity of reinforced NSC and HSC beams. It was found that the ANN model outperformed all other considered methods, providing more accurate results of shear capacity, and better capturing the effect of basic shear design parameters. Therefore, it offers an efficient alternative to evaluate the shear capacity of NSC and HSC members without stirrups.

Lime addition chemical stabilization of expansive soil at Al-Kawamil city, Sohag region, Egypt

  • Farghaly, Ahmed Abdelraheem;El-Shater, A.;Naiem, Mostafa Abdou Abdel;Hamdy, Fatma
    • Advances in Computational Design
    • /
    • v.5 no.1
    • /
    • pp.1-11
    • /
    • 2020
  • Soil is the fundamental element in the construction process. Soil problems affect the safety of the structures, even so the high quality of the structures and so, bad soil found the structures will affect the lifetime or even destroy the structures built on it. Therefore, the study of soil is an important step in the construction process and the investigation of the most effective characteristics of a special kind of soil (shale soil), i.e. Atterberg limits, swelling pressure, swelling potential and unconfined compression strength, are the most effective soil properties. A big projects will be constructed in new urban extension areas with expansive shale soils, like at Al-Kawamil and new Akhmim shale soils which associated with soil problems, treatment system should be used to ensure the stability of the soil under the structures foundations one of the most effective methods is by adding lime solution to the soil by specific quantities, which affect on the properties of the shale soil by decreasing the swelling and increasing the compressive strength of the treatment soils. Experimenting with the soil added to the lime, it was found that the addition of lime solution 6% improve c j the properties of the soil. The results of the tests showed the high effectiveness of using lime in the treatment of Al-Kawamil soil

EPB tunneling in cohesionless soils: A study on Tabriz Metro settlements

  • Rezaei, Amir H.;Shirzehhagh, Mojtaba;Golpasand, Mohammad R. Baghban
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.153-165
    • /
    • 2019
  • A case study of monitoring and analysis of surface settlement induced by tunneling of Tabriz metro line 2 (TML2) is presented in this paper. The TML2 single tunnel has been excavated using earth pressure balanced TBM with a cutting-wheel diameter of 9.49 m since 2015. Presented measurements of surface settlements, were collected during the construction of western part of the project (between west depot and S02 station) where the tunnel was being excavated in sand and silt, below the water table and at an average axis depth of about 16 m. Settlement readings were back-analyzed using Gaussian formula, both in longitudinal and transversal directions, in order to estimate volume loss and settlement trough width factor. In addition to settlements, face support and tail grouting pressures were monitored, providing a comprehensive description of the EPB performance. Using the gap model, volume loss prediction was carried out. Also, COB empirical method for determination of the face pressure was employed in order to compare with field monitored data. Likewise, FE simulation was used in various sections employing the code Simulia ABAQUS, to investigate the efficiency of numerical modelling for the estimating of the tunneling induced-surface settlements under such a geotechnical condition. In this regard, the main aspects of a mechanized excavation were simulated. For the studied sections, numerical simulation is not capable of reproducing the high values of in-situ-measured surface settlements, applying Mohr-Coulomb constitutive law for soil. Based on results, for the mentioned case study, the range of estimated volume loss mostly varies from 0.2% to 0.7%, having an average value of 0.45%.

Experimental and analytical investigation of composite columns made of high strength steel and high strength concrete

  • Lai, Binglin;Liew, J.Y. Richard;Xiong, Mingxiang
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.67-79
    • /
    • 2019
  • Composite columns made of high strength materials have been used in high-rise construction owing to its excellent structural performance resulting in smaller cross-sectional sizes. However, due to the limited understanding of its structural response, current design codes do not allow the use of high strength materials beyond a certain strength limit. This paper reports additional test data, analytical and numerical studies leading to a new design method to predict the ultimate resistance of composite columns made of high strength steel and high strength concrete. Based on previous study on high strength concrete filled steel tubular members and ongoing work on high strength concrete encased steel columns, this paper provides new findings and presents the feasibility of using high strength steel and high strength concrete for general double symmetric composite columns. A nonlinear finite element model has been developed to capture the composite beam-column behavior. The Eurocode 4 approach of designing composite columns is examined by comparing the test data with results obtained from code's predictions and finite element analysis, from which the validities of the concrete confinement effect and plastic design method are discussed. Eurocode 4 method is found to overestimate the resistance of concrete encased composite columns when ultra-high strength steel is used. Finally, a strain compatibility method is proposed as a modification of existing Eurocode 4 method to give reasonable prediction of the ultimate strength of concrete encased beam-columns with steel strength up to 900 MPa and concrete strength up to 100 MPa.