• Title/Summary/Keyword: Civil code

Search Result 1,178, Processing Time 0.027 seconds

Reliability Analysis to Contaminant Migration in Saturated Sandy Soils: Implementation and Verification (포화(飽和)된 사질토(砂質土) 내로의 오염물(汚染物) 이동에 관한 신뢰성(信賴性): 수행(遂行) 및 검증(檢證))

  • Jang, Yeon Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.217-227
    • /
    • 1992
  • The first and second-order reliability method(FORM and SORM) is presented using one dimensional finite difference and two dimensional finite element transport models. FORM and SORM can be used without any restrictive assumptions about the properties of the media, and the sensitivity information obtained as part of these analyses is used to identify the parameters which have major influence on the estimate of probability. The reliability analysis of transport in a one-dimensional domain is used to test the robustness of the reliability code and to evaluate the accuracy of the reliability method. A continuous source 2-D example with a concentration threshold limit state function is used to evaluate the influence of the parameters in the location of interest on the reliability solution.

  • PDF

P-△ Analysis for Design of Reinforced Concrete Slender Columns (철근 콘크리트 장주 설계를 위한 P-△ 해석)

  • Lee, Jae Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.87-96
    • /
    • 1992
  • Moment Magnifier Method has been generally used in estimation of total column moment induced by geometric nonlinearity for reinforced concrete slender column design, however second order analysis such as P-${\Delta}$ method has been recommended by Code for better result. Member stiffness estimation is the most significant factor for accuracy of second order analysis. Equivalent Column stiffness based on theoretically obtained moment-curvature-thrust relationship has been proposed and the analytical results of the proposed method, MacGregor-Hage Method, Furlong's Method, and Moment Magnifier Method are compared with experimentally obtained data.

  • PDF

Direct displacement-based seismic assessment of concrete frames

  • Peng, Chu;Guner, Serhan
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.355-365
    • /
    • 2018
  • Five previously-tested reinforced concrete frames were modelled using a nonlinear finite element analysis procedure to demonstrate the accurate response simulations for seismically-deficient frames through pushover analyses. The load capacities, story drifts, and failure modes were simulated. This procedure accounts for the effects of shear failures and the shear-axial force interaction, and thus is suitable for modeling seismically-deficient frames. It is demonstrated that a comprehensive analysis method with a capability of simulating material constitutive response and significant second-order mechanisms is essential in achieving a satisfactory response simulation. It is further shown that such analysis methods are invaluable in determining the expected seismic response, safety, and failure mode of the frame structures for a performance-based seismic evaluation. In addition, a new computer program was developed to aid researchers and engineers in the direct displacement-based seismic design process by assessing whether a frame structure meets the code-based performance requirements by analyzing the analysis results. As such, the proposed procedure facilitates the performance-based design of new buildings as well as the numerical assessment and retrofit design of existing buildings. A sample frame analysis was presented to demonstrate the application and verification of the approach.

Comparison of displacement capacity of reinforced concrete columns with seismic codes

  • Cansiz, Sinan;Aydemir, Cem;Arslan, Guray
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.295-304
    • /
    • 2019
  • The lateral displacement or drift may be the cause of the damage in the reinforced concrete (RC) columns under the seismic load. In many regulations, lateral displacement was limited according to the properties of columns. The design displacement limits may be represented indirectly through the material strain limits and the mechanical properties of columns. EUROCODE-8 and FEMA356 calculate displacement limits by taking into account the mechanical properties of columns. However, Turkey Building Earthquake Code (TBEC) determine displacement limits by taking into account the material strain limits. The aim of this study is to assess the seismic design codes for RC columns through an experimental study. The estimates of seismic design codes have been compared with the experimental results. It is observed that the lateral displacement capacities of columns estimated according to some seismic codes are not in agreement with the experimental results. Also, it is observed that TBEC is conservative in the context of the performance indicator of RC columns, compared to EUROCODE-8 and FEMA356. Moreover, in this study, plastic hinge length and effective stiffness of test elements were investigated.

An Estimation Model of Historical Cost Using BIM Library for Road Project (도로분야 BIM 라이브러리를 활용한 실적공사비 산정모델 구축)

  • Moon, HyounSeok;Ju, KiBeom
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.4
    • /
    • pp.431-442
    • /
    • 2015
  • Currently, a BIM-based quantity takeoff (QTO) system is mainly focused on architectural projects. To perform this, diverse quantity takeoff methods such as an object-based automatic quantity takeoff, manual quantity and base functions of calculation have widely been utilizing. However, since BIM library for road projects includes structural elements associated with alignment, it is necessary to establish cost estimation system interlocked with historical cost using 3D library by each unit length. Accordingly, the aim of this study is to develop cost estimation model with using a historical cost approach so that it can be utilized in construction planning based on the BIM library for road projects. For this, based on the BIM library for road, the standardized quantity is estimated, and a process for calculating historical cost and a verification model with a 5D simulation was developed by mapping a WBS code with each BIM library object. This can be applied during the approximate cost estimation process in a project planning and an initial design phase for road projects. Besides, it is expected that these results will be utilized in constructing an optimal historical cost estimation process for project libraries.

Reliability Analysis of Axially Loaded Large-scale Pile Foundations (대형말뚝기초의 축하중 거동에 대한 수치해석기반 신뢰성 해석)

  • Huh, Jung-Won;Park, Jae-Hyun;Lee, Ju-Hyung;Ha, Sung-Han;Kwak, Ki-Seok;Chung, Moon-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.17-22
    • /
    • 2009
  • Reliability analyses were performed to quantify the risk in axially loaded large-scale pile foundations in consideration of pile-soil interaction and uncertainties on various design variables. The finite difference method based on an equivalent soil spring model and a load transfer method and Monte Carlo simulation method are integrated in the framework of reliabilty analysis. The applicability and efficiency of the proposed method in the safety assessment of axially loaded pile-soil system was verified using a realistic example. Since the proposed method can explicitly consider uncertainties in various design variables, and quantify failure probability of a pile foundation, it can be used to estimate risk, to obtain basic informations for life cycle cost analysis, and to develop code requirements for a reliability-based design of pile foundations.

  • PDF

Response modification factor of mixed structures

  • Fanaie, Nader;Shamlou, Shahab O.
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1449-1466
    • /
    • 2015
  • Mixed structures consist of two parts: a lower part and an upper part. The lower part is usually made of concrete while the upper part is made of steel. Analyzing these structures is complicated and code-based design of them has many associated problems. In this research, the seismic behavior of mixed structures which have reinforced concrete frames and shear walls in their lower storeys and steel frames with bracing in their upper storeys were studied. For this purpose, seventeen structures in three groups of 5, 9 and 15 storey structures with different numbers of concrete and steel storeys were designed. Static pushover analysis, linear dynamic analysis and incremental dynamic analysis (IDA) using 15 earthquake records were performed by OpenSees software. Seismic parameters such as period, response modification factor and ductility factor were then obtained for the mixed (hybrid) structures using more than 4600 nonlinear dynamic analysis and used in the regression analysis for achieving proper formula. Finally, some formulas, effective in designing such structures, are presented for the mentioned parameters. According to the results obtained from this research, the response modification factor values of mixed structures are lower compared to those of steel or concrete ones with the same heights. This fact might be due to the irregularities of stiffness, mass, etc., at different heights of the structure. It should be mentioned that for the first time, the performance and seismic response of such structures were studied against real earthquake accelerations using nonlinear dynamic analysis, andresponse modification factor was obtained by IDA.

Reliability-Based Load and Resistance Factor Design (신뢰성 이론에 의한 하중 및 저항계수 설계)

  • Son, Seung Yo;Lee, Jong Heon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.4
    • /
    • pp.1-12
    • /
    • 1987
  • The Advanced First Order Second Moment(AFOSM) method is commonly used to determine partial safety factors in the development of probability based LRFD code. However, design format using load and resistance factors based on this method may result in different reliability levels from specified ones. Reliability-Conditioned(RC) method recently proposed by Ayyub et al. gives partial safety factors which do not affect the target reliability level as specified. However, this method has some numerical difficulties and the procedure is not consistent. The proposed RC/AFOSM combined method has not only numerical consistency, but also results in almost constant partial safety factors with respect to various design conditions, and the resulting reliability levels are very close to specified ones.

  • PDF

Interface treatment in shotcrete jacketing of reinforced concrete columns to improve seismic performance

  • Vandoros, Konstantinos G.;Dritsos, Stephanos E.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.1
    • /
    • pp.43-61
    • /
    • 2006
  • An investigation of the effectiveness of the interface treatment when column concrete jacketing is performed is presented. Alternative methods of interface connection were used in order to investigate the performance of strengthened concrete columns. These connecting techniques involved roughening the surface of the original column, embedding steel dowels into the original column and a combination of these two techniques. The experimental program included three strengthened specimens, one original specimen (unstrengthened) and one as-built specimen (monolithic). The specimens represented half height full-scale old Greek Code (1950's) designed ground floor columns of a typical concrete frame building. The jackets of the strengthened specimens were constructed with shotcrete. All specimens were subjected to displacement controlled earthquake simulation loading. The seismic performance of the strengthened specimens is compared to both the original and the monolithic specimens. The comparison was performed in terms of strength, stiffness and hysteretic response. The results demonstrate the effectiveness of the strengthening methods and indicate that the proper construction of a jacket can improve the behaviour of the specimens up to a level comparable to monolithic behaviour. It was found that different methods of interface treatment could influence the failure mechanism and the crack patterns of the specimens. It was also found that the specimen that combined roughening with dowel placement performed the best and all strengthened columns were better at dissipating energy than the monolithic specimen.

Assessment of infill wall topology contribution in the overall response of frame structures under seismic excitation

  • Nanos, N.;Elenas, A.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.355-372
    • /
    • 2015
  • This paper identifies the effects of infill wall existence and arrangement in the seismic response of steel frame structures. The methodology followed was based on the utilisation of overall seismic response indicators that distil the complexity of structural response in a single value hence enabling their straightforward comparative and statistical post process. The overall structure damage index after Park/Ang ($OSDI_{PA}$) and the maximum inter-story drift ratio (MISDR) have been selected as widely utilized structural seismic response parameters in contemporary state of art. In this respect a set of 225 Greek antiseismic code (EAK) spectrum compatible artificial accelerograms have been created and a series of non-linear dynamic analyses have been executed. Data were obtained through nonlinear dynamic analyses carried on an indicative steel frame structure with 5 different infill wall topologies. Results indicated the significant overall contribution of infill walls with a reduction that ranged 35-47% of the maximum and 74-81% of the average recorded $OSDI_{PA}$ values followed by an overall reduction of 64-67% and 58-61% for the respective maximum and average recorded MISDR values demonstrating the relative benefits of infill walls presence overall as well as localised with similar reductions observed in 1st level damage indicators.