• Title/Summary/Keyword: Civil code

Search Result 1,178, Processing Time 0.025 seconds

A Study on the Applicability of Amplification Factor to Estimate Peak Ground Acceleration of Pohang Area (국내 내진설계기준의 지반증폭계수를 활용한 포항지역의 지표면 최대가속도 산출 적절성 검토)

  • Kim, Jongkwan;Han, Jin-Tae;Kwak, Tae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.21-33
    • /
    • 2020
  • Ground response analysis has been conducted for each borehole data in Pohang area, using 1D equivalent linear method program, to investigate the applicability of amplification factor to estimate peak ground acceleration. Earthquake motions for ground response analysis were prepared by matching response spectrums for return period of 500, 1000, and 2400 years suggested by seismic design code (MOIS, 2017). Ground survey data were acquired from Geotechnical Information DB System. It has been confirmed that response spectrum obtained from ground response analysis showed good agreement with those from seismic design code irrespective of ground classification. However, PGA (Peak Ground Accelerations) of ground response analysis did not coincide with PGA calculated using amplification factor suggested by seismic design code.

Development and evaluation of punching shear database for flat slab-column connections without shear reinforcement

  • Derogar, Shahram;Ince, Ceren;Mandal, Parthasarathi
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.203-215
    • /
    • 2018
  • A large body of experiments have been conducted to date to evaluate the punching shear strength of flat slab-column connections, but it is noted that only a few of them have been considered for the development of the ACI Code provisions. The limited test results used for the development of the code provisions fall short of predicting accurately the punching shear strength of such connections. In an effort to address this shortfall and to gain an insight into the factors that control the punching shear strength of flat slab-column connections, we report a qualified database of 650 punching shear test results in this article. All slabs examined in this database were tested under gravity loading and do not contain shear reinforcement. In order to justify including any test result for evaluation punching shear database, we have developed an approved set of criteria. Carefully established set of criteria represent the actual characteristics of structures that include minimum compressive strength, effective depths of slab, flexural and compression reinforcement ratio and column size. The key parameters that significantly affect the punching shear strength of flat slab-column connections are then examined using ACI 318-14 expression. The results reported here have paramount significance on the range of applicability of the ACI Code provision and seem to indicate that the ACI provisions do not sufficiently capture many trends identified through regression of the principal parameters, and fall on the unsafe side for the prediction of the punching shear strength of flat slab-column connections.

An Analytical Study on the Embedded Depth of Concrete Poles in Inclined ground (경사지에서 콘크리트 전주의 근입깊이에 대한 해석적 연구)

  • Yoon, Ki-Yong;Kim, Eung-Seok;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1164-1169
    • /
    • 2014
  • Overturning of concrete poles are occurred annually due to natural disaster such as a typhoon. The present code for the resisting moment and the safety on overturning of concrete poles in inclined ground is inadequate. In this study, the concept of the code for those in flat ground is applied to calculate the resisting moment in inclined ground using general analysis program L-Pile Plus13.8. According to the analytical results, the resisting moment in inclined ground is rapidly decrease as increasing the slope angle although the embedded depth are added by the additional embedded depth on the code. It is revealed that the capacity in inclined ground is equivalent to that in flat ground if additional embedded depth is increased from 1.5 to 3 times.

Evolving live load criteria in bridge design code guidelines - A case study of India based on IRC 6

  • Karthik, P.;Sharma, Shashi Kant;Akbar, M. Abdul
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.1
    • /
    • pp.43-57
    • /
    • 2022
  • One of the instances which demand structural engineer's greatest attention and upgradation is the changing live load requirement in bridge design code. The challenge increases in developing countries as the pace of infrastructural growth is being catered by the respective country codes with bigger and heavier vehicles to be considered in the design. This paper presents the case study of India where Indian Roads Congress (IRC) codes in its revised version from 2014 to 2017 introduced massive Special vehicle (SV) around 40 m long and weighing 3850 kN to be considered in the design of road bridges. The code does not specify the minimum distance between successive special vehicles unlike other loading classes and hence the consequences of it form the motivation for this study. The effect of SV in comparison with Class 70R, Class AA, Class A, and Class B loading is studied based on the maximum bending moment with moving load applied in Autodesk Robot Structural Analysis. The spans considered in the analysis varied from 10 m to 1991 m corresponding to the span of Akashi Kaikyo Bridge (longest bridge span in the world). A total of 182 analyses for 7 types of vehicles (class B, class A, class 70R tracked, class 70R wheeled, class AA tracked, AA wheeled, and Special vehicle) on 26 different span lengths is carried out. The span corresponding to other vehicles which would equal the bending moment of a single SV is presented along with a comparison relative to Standard Uniformly Distributed Load. Further, the results are presented by introducing a new parameter named Intensity Factor which is proven to relate the effect of axle spacing of vehicle on the normalized bending moment developed.

EFFECT OF CONCRETE STRENGTH ON FLEXURAL DEFLECTION OF HIGH-STRENGTH REINFORCED CONCRETE BEAMS

  • Inju Lee;Taewan Kim;Sung-Nam Hong;Jie Cui;Sun-Kyu Park
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1313-1317
    • /
    • 2009
  • Deflections of Reinforced concrete structures must satisfy the permissible values and it is hard to predict the due to uncertainty of deflection of the reinforced concrete structures. Thus, many researchers have suggested a number of experimental equation of deflection against the uncertainty. In a specification, a procedure to evaluate flexure deflection using effective moment of inertia and moment-curvature relation is suggested. ACI offers a method using effective moment of inertia, which has been developed by Branson. Eurocode 2(EC2) suggests a procedure to evaluate deflection of reinforced concrete structure using moment-curvature relation. In this paper, a series of experiments were conducted on the singly reinforced concrete beams which have the same reinforcement ratio and different concrete strength. Therefore, the effect of the concrete strength on the deflection of the beams was analysed. The deflections obtained from the experiment were compared with the deflections calculated with ACI code and EC2.

  • PDF

Aero-elastic wind tunnel test of a high lighting pole

  • Luo, Yaozhi;Wang, Yucheng;Xie, Jiming;Yang, Chao;Zheng, Yanfeng
    • Wind and Structures
    • /
    • v.25 no.1
    • /
    • pp.1-24
    • /
    • 2017
  • This paper presents a 1:25 multi-freedom aero-elastic model for a high lighting pole at the Zhoushan stadium. To validate the similarity characteristics of the model, a free vibration test was performed before the formal test. Beat phenomenon was found and eliminated by synthesis of vibration in the X and Y directions, and the damping ratio of the model was identified by the free decay method. The dynamic characteristics of the model were examined and compared with the real structure; the similarity results were favorable. From the test results, the major along-wind dynamic response was the first vibration component. The along-wind wind vibration coefficient was calculated by the China code and Eurocode. When the peak factor equaled 3.5, the coefficient calculated by the China code was close to the experimental result while Eurocode had a slight overestimation of the coefficient. The wind vibration coefficient during typhoon flow was analyzed, and a magnification factor was suggested in typhoon-prone areas. By analyzing the power spectrum of the dynamic cross-wind base shear force, it was found that a second-order vortex-excited resonance existed. The cross-wind response in the test was smaller than Eurocode estimation. The aerodynamic damping ratio was calculated by random decrement technique and the results showed that aerodynamic damping ratios were mostly positive at the design wind speed, which means that the wind-induced galloping phenomenon is predicted not to occur at design wind speeds.

Evaluations of Structural Performance of Recycled Aggregate Concrete According to Replacement Ratios (치환율에 따른 순환골재 콘크리트의 구조성능 분석)

  • Nam, Jin-Won;Kim, Ho-Jin;Kim, Sung-Bae;Kim, Jang-Ho Jay;Byun, Keun Joo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.54-64
    • /
    • 2007
  • This study is a fundamental research in order to establish the design code of recycled aggregate concrete structure. The structural properties of recycled aggregate concrete such as flexure, shear, fatigue, compression, and bond development are experimentally investigated and confirmed. In this study, laboratory-scale reinforced concrete beam, column, and pull-out test specimens using recycled coarse aggregate are manufactured. Then, the structural performances of recycled aggregate concrete according to replacement ratios of recycled coarse aggregate are evaluated. Also, finite element analysis using commercial code DIANA is carried out to predict the test results and the analysis results are compared with test results in this study. Structural test results showed that the structural performances of recycled aggregate concrete specimens with 60% replacement ratio are reduced by approximately 15-20%. These results indicated that the replacement ratio of recycled coarse aggregate within 30% is a suitable to use for structural members. The results of finite element analysis showed that the specimens with 30% replacement ratio possessed similar or more excellent structural performance than normal concrete specimens. However, recycled aggregate concrete with 60% replacement ratio of recycled coarse aggregate must be carefully considered for structural applications due to significant decrease of the failure loads.

  • PDF

The Party's Autonomy Principle on the Choice of the Applicable law to International Commercial Arbitral Awards - Focus on the Choice of the Lex Rercatoria and the Possibility of $d\acute{e}pe\c{c}age$ by the Party - (국제상사중재판정의 준거법선택에 있어서 당사자자치의 원칙 - 당사자에 의한 lex mercatoria의 선택과 준거법 분할지정의 가능여부를 중심으로 -)

  • O, Seog-Ung
    • Journal of Arbitration Studies
    • /
    • v.17 no.1
    • /
    • pp.117-136
    • /
    • 2007
  • Currently, it is the general trend that the party's autonomy principle is applicable in determining the applicable law for the international private law and the international commercial arbitration. The purpose of this article is to make research on the party's autonomy principle for the international commercial arbitral awards. For this purpose ist to analyse regal issue the applicability of the lex mercatoria and the possibility of $d\acute{e}pe\c{c}age$ relating to the party autonomy. In this Article ist dealt with Art. 29 para. 1 of the Korean Arbitration Act in comparison with Art. 28 para. 1 UNCITRAL Model Law and Art. 1051 para. 1 of the German Code of Civil Procedure. The Art. 28 para. 1 UNCITRAL Model Law and Art. 1051 para. 1 of the German Code of Civil Procedure provides equally. "The arbitral tribunal shall decide the dispute in accordence with such 'rules of law' as chosen by the parties as applicable to the substance of the dispute. Any designation of the law or legal system of a given State shall be construed, unless otherwise expressed, as directly referring to the substantive law of that State and not to its conflict of laws rules." The term 'rule of law' used to describe the applicability of the lex mercatoria and the possibility $d\acute{e}pe\c{c}age$. Unlike Art. 28 para. 1 UNCITRAL Model Law and Art. 1051 para.1 of the German Code of Civil Procedure. Act, Art. 29(1) of the Korean Arbitration Act provides that the arbitral tribunal shall decide the dispute in accordence with the 'law' chosen by the parties as applicable to the substance of the dispute. However the majority view in Korea takes the position that the term 'law' should be interpreted broadly so as to encompass 'rules of law' at UNCITRAL Model Law and the German Code of Civil Procedure.

  • PDF

Integrated Code Classification System for Work Sections in Standard Method of Measurement and Construction Standard Specifications (수량산출기준 및 공사시방서의 공종분류코드 통합기준 연구)

  • Kang Leen-Seok;Kwak Joong-Min
    • Korean Journal of Construction Engineering and Management
    • /
    • v.2 no.4 s.8
    • /
    • pp.80-91
    • /
    • 2001
  • Considering that the classified items in the work section level can have an applicability when those items are being used to cost and specification information with consistency, the work section classification code should be applied as an Integrated code system. Our construction industry is using three work section classification systems for civil engineering projects, such as integrated construction information classification system, standard method of measurement and guide of project specification. And each standard construction specification is also using different work section classification systems. This study suggests a methodology to integrate the code systems in construction specifications with civil engineering standard method of measurement. And the methodology suggested in this study was applied to a web-based prototype system with practical specification codes.

  • PDF

Probability-Based WSD Code for Reinforced Concrete (확률이론(確率理論)에 기초(基礎)한 철근(鐵筋)콘크리트 허용응력설계규준(許容應力設計規準))

  • Cho, Ryo Nam;Shin, Jae Chul;Chun, Chai Myung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.4
    • /
    • pp.61-68
    • /
    • 1986
  • This paper presents a method for developing a probability-based working stress design code for reinforced concrete. Reliability of reinforced concrete structural members is evaluated by using an advanced second moment reliability method, and then, a practical method for code calibration is shown in this paper. The target reliability indices for various structural elements are determined by considering the results of the numerical studies on the safety of the structures designed by the current code, and by reflecting the construction practice. A set of allowable stresses and safety factors for reinforced concrete is proposed as a possible substitute for the current safety provisions, based on the rational target reliability indices.

  • PDF