• Title/Summary/Keyword: Civil Law

Search Result 1,212, Processing Time 0.026 seconds

Mechanical evolution law and deformation characteristics of preliminary lining about newly-built subway tunnel closely undercrossing the existing station: A case study

  • Huijian Zhang;Gongning Liu;Weixiong Liu;Shuai Zhang;Zekun Chen
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.525-538
    • /
    • 2023
  • The development of a city is closely linked to the construction and operation of its subway system. However, constructing a new subway tunnel under an existing station is an extremely complex task, and the deformation characteristics and mechanical behavior of the new subway tunnel during the excavation process can greatly impact the normal operation of the existing station. Although the previous studies about the case of underpass engineering have been carried out, there is limited research on the condition of a newly-built subway tunnel that closely undercrossing an existing station with zero distance between them. Therefore, this study analyzes the deformation law and mechanical behavior characteristics of the preliminary lining of the underpass tunnel during the excavation process based on the real engineering case of Chengdu Metro Line 8. This study also makes an in-depth comparison of the influence of different excavation methods on this issue. Finally, the accuracy of numerical simulation is verified by comparing it with on-site result. The results indicate that the maximum bending moment mainly occurs at the floor slab of the preliminary lining, while that of the ceiling is small. The stress state at the ceiling position is less affected by the construction process of the pilot tunnel. Compared to the all-in-one excavation method, although the process of partial excavation method is more complicated, the deformation of preliminary lining caused by it is basically less than the upper limit value of the standard, while that of the all-in-one excavation method is beyond standard requirements.

A Study on the Limits in the Use of Force against a Hijacked Civil Aircraft (피랍 민간항공기에 대한 무력행사의 한계에 관한 연구)

  • Kim, Man-Ho
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.19 no.1
    • /
    • pp.141-163
    • /
    • 2004
  • The limits in the use of force against a civil aircraft which intrudes into sovereign airspace have not been defined in the aspect of international law. Therefore, this paper intends to analyze international laws and practices about sovereign airspace intrusions by the civil aircraft, and to examine the legality in the use of force against the civil aircraft hijacked by means of political terrorism, in particular. In this paper, the sphere of study is restricted within the problems of interception against the civil aircraft which intrudes into sovereign airspace in times of peace, excluding the problems against a state aircraft, and the responsibilities for the civil or criminal affairs due to interceptions. Herein this paper analyzes the existing international laws and the cases of each nation's use of force against the civil aircraft which intrudes into sovereign airspace, and organizes the conditions in the use of force which have been accepted in international laws and practices, and then applies them to the special case of civil aircraft hijacked by political terrorism. Consequently, this paper suggests that the basic principles of necessity, ultimateness, and proportionality be taken into consideration in the use of force against civil aircraft which intrudes into sovereign airspace. This study finally suggests that the possibility in the use of force against civil aircraft hijacked by political terrorism might be higher than any type of civil aircraft intrusions into sovereign airspace due to the factor of necessity of national security concerned.

  • PDF

Numerical study on mechanical and failure properties of sandstone based on the power-law distribution of pre-crack length

  • Shi, Hao;Song, Lei;Zhang, Houquan;Xue, Keke;Yuan, Guotao;Wang, Zhenshuo;Wang, Guozhu
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.421-434
    • /
    • 2019
  • It is of great significance to study the mechanical properties and failure mechanism of the defected rock for geological engineering. The defected sandstone modeling with power-law distribution of pre-cracks was built in this paper by Particle Flow Code software. Then the mechanical properties of sandstone and the corresponding failure process were meticulously analyzed by changing the power-law index (PLI) and the number of pre-cracks (NPC). The results show that (1) With the increase of the PLI, the proportion of prefabricated long cracks gradually decreases. (2) When the NPC is the same, the uniaxial compressive strength (UCS) of sandstone increases with the PLI; while when the PLI is the same, the UCS decreases with the NPC. (3) The damage model of rock strength is established based on the Mori-Tanaka method, which can be used to better describe the strength evolution of damaged rock. (4) The failure mode of the specimen is closely related to the total length of the pre-crack. As the total length of the pre-crack increases, the failure intensity of the specimen gradually becomes weaker. In addition, for the specimens with the total pre-crack length between 0.2-0.55 m, significant lateral expansion occurred during their failure process. (5) For the specimens with smaller PLI in the pre-peak loading process, the concentration of the force field inside is more serious than that of the specimens with larger PLI.

Consumer Protection in E-commerce: Synthesis Review of Related Books

  • Alharthi, Saud Hamoud
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.413-419
    • /
    • 2022
  • To have a complete and comprehensive understanding of the research subject and to form an integrated legal framework for it, I have sought comprehensively to cover the major written literature on the issue under consideration. I also benefitted from a wide range of research and academic studies pertaining to the same topic, although that literature did not specifically address the issue of consumer rights in electronic contracting in the Saudi e-commerce system. Rather, it addressed only the civil and criminal protection of the consumer in e-commerce.

Porosity estimation using electrical resistance Cone Probe in offshore soils (전기저항 콘 프로브를 이용한 해안지반의 간극률 산정)

  • Lee, Jong-Sub;Kim, Joon-Han;Yoon, Hyung-Koo;Cho, Tae-Hyeon;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.127-133
    • /
    • 2008
  • The electrical resistivity methods have been commonly used for figuring out the ground layers. The purpose of this paper, differently from previous methods, is not only to figure out the layers but also to develope a equipment and a method to analyze ground porosity. Equipment has a shape of cone, which can be coupled with drilling rods. A field penetration test was performed to test application in Incheon Chungla area. Through the field test soil resistances were measured. To calculate soil porosity along the depth, Archie's law is applied. The results show that a new equipment and porosity analysis method using Archie's law can distinguish soil layers and precisely measure soil porosity.

  • PDF

4 Electrical Resistivity Probe for Investigating soft offshore soils (해안연약 지반 조사를 위한 4전극 전기비저항 프로브)

  • Kim, Joon-Han;Yoon, Hyung-Koo;Bae, Myeong-Ho;Jung, Soon-Hyuck;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.464-475
    • /
    • 2009
  • Electrical resistivity can be used for porosity estimation. In order to improve previously developed ERCP(Electrical Resistivity Cone Probe), 4ERP(4 Electrical Resistivity Probe), which has Wenner array at the tip of probes, has been developed. In properties of current flow Wenner array measures electrical properties of undisturbed area during penetration and relatively correct measurements are guaranteed without polarization. Furthermore, Wenner array equation can estimate electrical resistivity without extra calibration. 4ERP is developed into 2 types, penetration and fixation. Penetration type has wedge-shaped tip. Considering disturbance minimization, fixed type has plane tip. Fixed type 4ERP in consolidation cell measure electrical resistivity increment along porosity decrease, and penetration type 4ERP measured resistivity profile along the depth in chamber. Applying Archie's law, porosity profile was estimated with electrical resistivity. The tests result suggests that 4ERP can be new site investigation equipment with little disturbance.

  • PDF

3-D Free Vibration Analysis of Exponential and Power-law Functionally Graded Material(FGM) Plates (지수 및 멱 법칙 점진기능재료 판의 3차원 자유진동해석)

  • Lee, Won-Hong;Han, Sung-Cheon;Ahn, Jin-Hee;Park, Weon-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.553-561
    • /
    • 2015
  • The exponential and power law functionally graded material(FGM) theory is reformulated considering the refined shear and normal deformation theory. This theory has ability to capture the both normal deformation effect and exponential and power law function in terms of the volume fraction of the constituents for material properties through the plate thickness. Navier's method has been used to solve the governing equations for all edges simply supported plates on Pasternak elastic foundation. Numerical solutions of vibration analysis of FGM plates are presented using this theory to illustrate the effects of power law index and 3-D theory of exponential and power law function on natural frequency. The relations between 3-D and 2-D higher-order shear deformation theory are discussed by numerical results. Further, effects of (i) power law index, (ii) side-to-thickness ratio, and (iii) elastic foundation parameter on nondimensional natural frequency are studied. To validate the present solutions, the reference solutions are discussed.

Combined influence of variable distribution models and boundary conditions on the thermodynamic behavior of FG sandwich plates lying on various elastic foundations

  • Djamel Eddine Lafi;Abdelhakim Bouhadra;Belgacem Mamen;Abderahmane Menasria;Mohamed Bourada;Abdelmoumen Anis Bousahla;Fouad Bourada;Abdelouahed Tounsi;Abdeldjebbar Tounsi;Murat Yaylaci
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.103-119
    • /
    • 2024
  • The present research investigates the thermodynamically bending behavior of FG sandwich plates, laying on the Winkler/Pasternak/Kerr foundation with various boundary conditions, subjected to harmonic thermal load varying through thickness. The supposed FG sandwich plate has three layers with a ceramic core. The constituents' volume fractions of the lower and upper faces vary gradually in the direction of the FG sandwich plate thickness. This variation is performed according to various models: a Power law, Trigonometric, Viola-Tornabene, and the Exponential model, while the core is constantly homogeneous. The displacement field considered in the current work contains integral terms and fewer unknowns than other theories in the literature. The corresponding equations of motion are derived based on Hamilton's principle. The impact of the distribution model, scheme, aspect ratio, side-to-thickness ratio, boundary conditions, and elastic foundations on thermodynamic bending are examined in this study. The deflections obtained for the sandwich plate without elastic foundations have the lowest values for all boundary conditions. In addition, the minimum deflection values are obtained for the exponential volume fraction law model. The sandwich plate's non-dimensional deflection increases as the aspect ratio increases for all distribution models.

Fragility Analysis of A Scaled Model of Reinforced Concrete Column in Accordance with Similitude Law (상사법칙이 적용된 철근콘크리트 기둥 축소모형의 지진 취약도 분석)

  • Park, Dong Uk;Jeon, Bub Gyu;Kim, Nam Sik;Park, Jamin;Cho, Jae-Yeol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.87-93
    • /
    • 2017
  • Many studies are conducted in several fields for fragility analysis of structures or elements which is a probabilistic seismic safety analysis in consideration with uncertainty of seismic loading. It is hard to directly conduct fragility analysis for an infrastructure with social importance due to its size. Therefore, a fragility analysis for an infrastructure mainly conducted in element level or conducted with scaled model built in accordance with similarity law. In this article, fragility analysis for prototype and scaled model of reinforced concrete column was conducted with numerical models which had been updated by the results of shaking table test and pseudo dynamic test. As a result, response stress from the numerical analysis result of prototype model was higher than that from scaled model due to different stiffness ratios between steel and concrete. However, the probability of failure for scaled model was higher than that for prototype model because failure criteria for scaled model was down due to similarity law. Also it was evaluated that probability of failure by using log normal standard deviation of response stresses by spectrum matched accelerograms was more reliable than probability of failure by using existing coefficient of variation normally used.