• Title/Summary/Keyword: Civil College

Search Result 2,914, Processing Time 0.031 seconds

The Analysis of Evergreen Tree Area Using UAV-based Vegetation Index (UAV 기반 식생지수를 활용한 상록수 분포면적 분석)

  • Lee, Geun-Sang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.15-26
    • /
    • 2017
  • The decrease of green space according to the urbanization has caused many environmental problems as the destruction of habitat, air pollution, heat island effect. With interest growing in natural view recently, proper management of evergreen tree which is lived even the winter season has been on the rise importantly. This study analyzed the distribution area of evergreen tree using vegetation index based on unmanned aerial vehicle (UAV). Firstly, RGB and NIR+RG camera were loaded in fixed-wing UAV and image mosaic was achieved using GCPs based on Pix4d SW. And normalized differences vegetation index (NDVI) and soil adjusted vegetation index (SAVI) was calculated by band math function from acquired ortho mosaic image. validation points were applied to evaluate accuracy of the distribution of evergreen tree for each range value and analysis showed that kappa coefficient marked the highest as 0.822 and 0.816 respectively in "NDVI > 0.5" and "SAVI > 0.7". The area of evergreen tree in "NDVI > 0.5" and "SAVI > 0.7" was $11,824m^2$ and $15,648m^2$ respectively, that was ratio of 4.8% and 6.3% compared to total area. It was judged that UAV could supply the latest and high resolution information to vegetation works as urban environment, air pollution, climate change, and heat island effect.

The analysis of solar radiation to solar plant area based on UAV geospatial information system (UAV 공간정보 기반의 태양광발전소 부지의 일사량 분석)

  • Lee, Geun-Sang;Lee, Jong-Jo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.5-14
    • /
    • 2018
  • Recently the construction of solar plant showed a steady growth in influence of renewable energy policy. It is very important to determine the optimal location and aspect of solar panel using analyzed data of solar radiation to solar plant area beforehand. This study analyzed solar radiation in solar plant area using DEM acquired from UAV geospatial information. Mean solar radiation of 2017 was calculated as $1,474,466W/m^2$ and total solar radiation of 2017 considering solar plant area showed $33,639MW/m^2$ on analyzed result. It is important to analyze monthly solar radiation in aspect of maintenance works of solar plant. Monthly solar radiation of May to July was calculated over $160,000W/m^2$ and that of January to February and November to December showed under $80,000W/m^2$ in monthly solar radiation analysis of solar plant area. Also this study compared with solar radiation being calculated from UAV geospatial information and that of National Institute of Meteorological Sciences. And mean solar radiation of study area showed a little high in comparison with whole country data of National Institute of Meteorological Sciences, because the 93.7% of study area was composed of south aspect. Therefore this study can be applied to calculate solar radiation in new developed solar plant area very quickly using UAV.

Drone-based Vegetation Index Analysis Considering Vegetation Vitality (식생 활력도를 고려한 드론 기반의 식생지수 분석)

  • CHO, Sang-Ho;LEE, Geun-Sang;HWANG, Jee-Wook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.2
    • /
    • pp.21-35
    • /
    • 2020
  • Vegetation information is a very important factor used in various fields such as urban planning, landscaping, water resources, and the environment. Vegetation varies according to canopy density or chlorophyll content, but vegetation vitality is not considered when classifying vegetation areas in previous studies. In this study, in order to satisfy various applied studies, a study was conducted to set a threshold value of vegetation index considering vegetation vitality. First, an eBee fixed-wing drone was equipped with a multi-spectral camera to construct optical and near-infrared orthomosaic images. Then, GIS calculation was performed for each orthomosaic image to calculate the NDVI, GNDVI, SAVI, and MSAVI vegetation index. In addition, the vegetation position of the target site was investigated through VRS survey, and the accuracy of each vegetation index was evaluated using vegetation vitality. As a result, the scenario in which the vegetation vitality point was selected as the vegetation area was higher in the classification accuracy of the vegetation index than the scenario in which the vegetation vitality point was slightly insufficient. In addition, the Kappa coefficient for each vegetation index calculated by overlapping with each site survey point was used to select the best threshold value of vegetation index for classifying vegetation by scenario. Therefore, the evaluation of vegetation index accuracy considering the vegetation vitality suggested in this study is expected to provide useful information for decision-making support in various business fields such as city planning in the future.

Report on the molluscan fauna in Tongbatarl lagoon on the east coast of Jeju, Korea (제주 동부연안 통밧알 석호의 연체동물상 보고)

  • Lee, Hee-Jung;Noseworthy, Ronald G.;Park, SangRul;Hong, Hyun-Ki;Lee, Byung-Gul;Choi, Kwang-Sik
    • The Korean Journal of Malacology
    • /
    • v.30 no.1
    • /
    • pp.95-99
    • /
    • 2014
  • In the present study, we surveyed the molluscan fauna in a lagoon located near Seong-san harbor on the east coast of Jeju Island in July 2012. For the survey, a $25{\times}25cm$ quadrat was deployed over 3 randomly selected sites in the intertidal area of the lagoon. Sediment from the surface to a depth of 25 cm in the quadrat was removed and sieved using a 1 mm mesh sieve. All molluscan fauna retained on the sieve was identified to the species level. From the survey, 25 species of mollusca belonging to 2 orders and 16 families were identified. Species richness, in terms of total number of species, was found to be the highest at sampling site 1, where the substrate was composed of coarse sand and some rocks, while it was lowest at sampling site 3, composed of compact fine sand. Regardless of the type of substrate at the sampling sites, the mud-creeping snail Batillaria cumingii (Crosse, 1862) occurred at a high density, ranging from $324-468ind./m^2$. The luciniid bivalve Pillucina pisidium also occurred at a high density at sampling site 1, at $336ind./m^2$, while the density of this species was only $4ind./m^2$ at sampling site 3. The Manila clam Ruditapes philippinarum could be found at all 3 sampling sites with very low density ranging from $16-48ind./m^2$. The density and species richness of molluscs observed in this study was lower compared to the previously reported molluscan fauna in Jeju Island, suggesting that further investigation needs to be carried out to conserve the unique marine lagoon ecosystem in Jeju Island.

Experimental Studies on Shear Strength of High-Strength Lightweight Concrete Beam using the Industrial by-products (산업부산물을 활용한 고강도 경량콘크리트 보의 전단강도에 대한실험 연구)

  • Lee, Seung-Jo;Park, Jung-Min;Kim, Wha-Jung
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.621-630
    • /
    • 2006
  • Twelve beams made of lightweight high-strength concrete were tested to determine their diagonal cracking and ultimate shear capacities. A total of 12 beams without(4 beams) and with lightweight(8 beams) were tested in a stiff testing facility, and complete load-midspan deflection curves, including the maximum capacities portion, were obtained. The variables in the test program were concrete strength, which varied 35.4 MPa, 65.3 MPa; shear span-depth ratios a/d=1.5, 2.5, 3.5, 4.5; and tensile steel ratio between 0.57 and 2.3 percent. Also, we divided beam by diagonal tension crack and ultimate shearing strength to propose an equation. In addition, it analyzed comparison mutually applying existing proposal and guide. $V_{cr}$ was as result that AIK recommendations and Zsutty proposal decrease more than a/d=2.5, increased some in Mathey's proposal equation. $V_{cr,\exp}/V_{cr,cal}$ showed tendency of overestimation according to increase of tensile steel ratio and compressive strength of concrete. On the other hand, $V_{cr,\exp}/V_{cr,cal}$ is superior in conformability with an experiment result Zsutty's proposal among other equations. The proposal equation hew that expect $V_{cr}/V_u$, rationally about shearing strength. Therefore, shear strength an equation is considered to be utilized usefully evaluating capacity by change of the shear span depth ratio of lightweight concrete, tensile steel ratio, and compressive strength of the concrete in this research.

The Influence of Al2O3 on the Properties of Alkali-Activated Slag Cement (알칼리 활성화 슬래그 시멘트의 특성에 미치는 Al2O3의 영향)

  • Kim, Tae-Wan;Kang, Choong-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.205-212
    • /
    • 2016
  • This research investigates the influence of ground granulated blast furnace slag (GGBFS) composition on the alkali-activated slag cement (AASC). Aluminum oxide ($Al_2O_3$) was added to GGBFS binder between 2% and 16% by weight. The alkaline activators KOH (potassium hydroxide) was used and the water to binder ratio of 0.50. The strength development results indicate that increasing the amount of $Al_2O_3$ enhanced hydration. The 2M KOH + 16% $Al_2O_3$ and 4M KOH + 16% $Al_2O_3$ specimens had the highest strength, with an average of 30.8 MPa and 45.2 MPa, after curing for 28days. The strength at 28days of 2M KOH + 16% $Al_2O_3$ was 46% higher than that of 2M KOH (without $Al_2O_3$). Also, the strength at 28days of 4M KOH + 16% $Al_2O_3$ was 44% higher than that of 4M KOH (without $Al_2O_3$). Increase the $Al_2O_3$ contents of the binder results in the strength development at all curing ages. The incorporation of AASC tended to increases the ultrasonic pulse velocity (UPV) due to the similar effects of strength, but increasing the amount of $Al_2O_3$ adversely decreases the water absorption and porosity. Higher addition of $Al_2O_3$ in the specimens increases the Al/Ca and Al/Si in the hydrated products. SEM and EDX analyses show that the formation of much denser microstructures with $Al_2O_3$ addition.

A Study on Utilization of Waste Organic Matter for Slope Protection (비탈면보호를 위한 폐유기물질의 활용성에 대한 연구)

  • Park, Kyungsik;Hwang, Insang;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.4
    • /
    • pp.41-48
    • /
    • 2015
  • Coffee consumption in Korea has been currently growing every year, and as a result, approximately 0.2 million tons of Spent Coffee Grounds (SCG) are being created every year. SCG, which is waste organic material, is often classified as food waste and an annual amount of 0.27 million ton is discarded while containing moisture and provoking serious environmental issue. Physico-chemical characteristics of SCG were analyzed in this study and medium and long-term growth experiments were conducted in order to evaluate its utilization potential. According to the experiment results, mixing SCG into the previous base material resulted in accelerated germination and growth in the mid-term compared to previous base material alone, despite slower germination or growth in early stage. Especially, it showed lower withering rate and decrease in various symptoms that are caused by nutrition shortage in case of discontinued sprinkling, etc., compared to the previous base material. Hence, while SCG has a feature of hindering early development due to its feature of waste organic material that is rich in nitrogen, its benefit for long-term growth coming its moisturizing ability and supply of organic matter was confirmed in the study. On balance, SCG is believed to be a material that can replace or complement the previous base materials.

A Study on Dynamic Pile-Soil-Structure Interactions (말뚝-지반-구조물의 동섬 상호작용 연구)

  • Lee, In-Mo;Lee, Gwan-Ho;Kim, Yong-Jin
    • Geotechnical Engineering
    • /
    • v.7 no.1
    • /
    • pp.41-52
    • /
    • 1991
  • A study of the effects of dynamic pile-soil-structure interactions on the response of super- structures, supported by group piles, are presented in this paper. The dynamic impedance functions of single pile generated by soil-pile interactions are obtained and compared among others using the methods proposed by Novak, Gazetas, and Kuhlemeyer, and using the equivalent cantilever method. Group pile effects are also considered by the following approaches : neglecting interaction effects : group efficiency ratio concept : static interaction approach . and dynamic interaction approach. The responses of a nuclear containment structure are obtained by using the elastic half-space analysis, based on the impedance functions mentioned above. Main conclusions drawn from this study are as follows : 1. The numerical results of the impedance functions calculated by each method were quite different : the Novak's was the smallest, and the Kuhlemeyer's the highest. Considering group effects, similar values in each approach were obtained for the stiffness : the difference was very big for the damping. 2. The top displacement of the structure was reduced by 20% or more by pile installations. However, the base shear force, the base moment, and the resonance frequency were increased by more than two times due to stiffening effect of the ground by pile installations. 3. Whether frequency dependant impedence functions or frequency independant functions were used, the responses of the structure were not so much affected by the choice of the impedance functions. 4. The reduction effect of the top displacement increased with the increase of the maximum ground acceleration.

  • PDF

Study on the Consolidation Characteristics of Marine Clay by CRS and Conventional Tests (일정변헝률 및 표준압밀시험을 이용한 해성점토의 압밀특성 연구)

  • Lee, U-Jin;Im, Hyeong-Deok;Lee, Won-Je
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.47-60
    • /
    • 1998
  • A series of conventional tests and CRS consolidation tests with different rates of strain were performed to investigate the consolidation characteristics of marine clay. Preconsolidation pressures were evaluated by applying previously proposed methods for both the conventional tests and CRS tests results in order to check the legitimacy of those methods. The effects of strain rate on effective consolidation stress strain relationship, porewater pressure, and preconsolidation pressure were also discussed It was found that the effective stress strain relationship and the preconsolidation pressure are a function of strain rate imposed during consolidation test, but compression index isn't. The preconsolidation pressure ratio ($a_2=\sigma'_{pCRS}/\sigma'_{pConv}$)of marine clay appears proportional to the logarithm of strain rate, with average values ranging from 1.11 to 1.30 for strain rates between $1\timesx10^{-4} %/sec\; and\; 4\times10 %/sec$. The porewater pressure ratio during CRS teats does not exceed 6.0% except when the strain rate is $6.67\times10^{-4} %/sec$. Coefficient of consolidation or coefficient of permeability at normally consolidated range was not affected by the type of consolidation tests and the strain rate. Typical values of compression index (C.), coefficient of consolidation(c.), and coefficient of permeability (k.) at normally consolidated range were 0.56-0.95, $0.56\times10^{-4}~3.0\times10^{-4}cm2/sec,\; and\; 2.0\times10^{-8}~7.0\time10^{-4}cm/sec,$ respectively.

  • PDF

The Effects of Na2CO3 on Early Strength of High Volume Slag Cement (대량치환 슬래그 시멘트의 초기강도에 미치는 Na2CO3의 영향)

  • Kim, Tae-Wan;Hahm, Hyung-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.349-356
    • /
    • 2016
  • This report presents the results of an investigation on the early strength development of pastes high volume slag cement (HVSC) activated with different concentration of sodium carbonate ($Na_2CO_3$). The ordinary Portland cement (OPC) was replaced by ground granulated blast furnace slag (GGBFS) from 50% to 90% by mass, the dry powders were blended before the paste mixing. The $Na_2CO_3$ was added at 0, 2, 4, 6, 8 and 10% by total binder (OPC+GGBFS) weight. A constant water-to-binder ratio (w/b)=0.45 was used for all mixtures. The research carried out the compressive strength, ultrasonic pulse velocity (UPV), water absorption and X-ray diffraction (XRD) analysis at early ages(1 and 3 days). The incase of mixtures, V5 (50% OPC + 50% GGBFS), V6 (40% OPC + 60% GGBFS) and V7 (30% OPC + 70% GGBFS) specimens with 6% $Na_2CO_3$, V8 (20% OPC + 80% GGBFS) and V9 (10% OPC + 90% GGBFS) specimens with 10% $Na_2CO_3$ showed the maximum strength development. The results of UPV and water absorption showed a similar tendency to the strength properties. The XRD analysis of specimens indicated that the hydration products formed in samples were CSH and calcite phases.