• Title/Summary/Keyword: Circumferential Force

Search Result 96, Processing Time 0.021 seconds

An Experimental Study on the Residual Stress Distribution at Circumferential Welds in Pipes (파이프 원주방향 용접부의 잔류응력분포 특성에 관한 실험적 연구)

  • Namkoong, Jae-Gwan;Hong, Jae-Hak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.1
    • /
    • pp.41-49
    • /
    • 1991
  • A knowledge of the resdual stress distribution at circumferential weldments can normally increase the accuracy of a fracture assessment in pipe line. In this paper, we present the measurements about the residual stress distributions at three kinds of circumferential butt welded pipes using the holl drilling strain gage method. By this experiment, we have obtined the following characteristics. At the inner surface of the pipe region near the center line of welding is under high tensile residual stress. However, as the distance from the center line of welding increases, the tensile component decreases and finally becomes compressive residual stress at region far away from the center line of welding. The longitudinal residual stress at the outer surface is compressive regardless of the diameter of pipe and the circumferential stress is changed from compressive to tensile as pipe diameter increases. The results also demonstrate that the residual stress is mainly caused by self-restraint bending force in the pipe welding.

  • PDF

Determination of Optimum Cutter Shape for Peeling Altari Radish (알타리무 삭피용 최적 칼날형상의 구명)

  • 민영봉;김성태;강동현;정태상
    • Journal of Biosystems Engineering
    • /
    • v.28 no.5
    • /
    • pp.421-428
    • /
    • 2003
  • This study was conducted to determine the optimum blade shape for peeling Altari radish. To figure out the required peeling force according to various angles of blade and rakes of peeling cutter, two peeling tests such as circumferential peeling and longitudinal peeling of Altari radish were carried out. Based on the pretest results, which performed to investigate the applicability of the optimum shape of cutter and to find out the cutting pattern according to the lapse of days after harvesting the radish, the peeling depth and width of the blade were fixed at 2 mm and 10 mm. From two methods of circumferential and longitudinal peeling test, the angles of rake and blade as cutter shape factors were affected on peeling force. But the peeling speed was not affected on it under the safety speed as 0.2 m/s, without blade vibrating on peeling operation. The rake angle was more effective factor than the blade angle, and the optimum angles of blade and rake were 10$^{\circ}$ and 55$^{\circ}$ respectively. The cutting surface by the longitudinal peeling was more smooth than that by the circumferential peeling. There was no problem in peeling work during 4 days after harvest because the freshness of the Altari radish was maintained.

Thermal-Structural Coupled Field Analysis of the Circumferential Pressing Type Brake Disc (원주가압형 브레이크 디스크의 열-구조 연성해석)

  • Kim, Hyeong-Hoon;Lee, Seong-Wook;Han, Dong-Seop;Han, Geun-Jo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.69-74
    • /
    • 2008
  • The heat generated by the brake system of vehicles results in reduction of friction force on the brake surface and vibration during a braking. To solve these problems, extensive research for the brake shape has been conducted such as drilling cooling holes on the brake disc, accommodating ventilated holes and etc. In this study, we suggest the circumferential pressing type brake disc in order to improve its cooling performance. In order to compare the cooling-down efficiency between the conventional side-pressing type and the circumferential-pressing type, we adopted the FMVSS 105-77 as thermal analysis conditions and This newly proposed concept has been verified using Thermal-structure Coupled Field Analysis along with comparative analysis with the existing ventilated disk.

A Study on Effect of Temperature Distribution in Shape Change of the Circumferential Pressing Type Disc (원주가압형 디스크의 형상변화가 온도분포에 미치는 영향에 관한 연구)

  • Kim, Hyeong-Hoon;Lee, Seong-Wook;Han, Dong-Seop;Han, Geun-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.4
    • /
    • pp.86-91
    • /
    • 2007
  • The heat generated by the brake system of vehicles results in reduction of friction force on the brake surface and vibration when breaking. These problems play essential part in break's performance. To solve these problems, extensive research has been conducted such as drilling cooling holes on the brake pud, accommodating ventilated holes and etc. In this study, we suggest the compression of brake in circumferential direction in order to improve its cooling performance. And we analyzed comparing temperature distribution which is generated accomplishing heat analysis at each disc.

  • PDF

Stress Variation Characteristics of a High-Pressure Hose with Respect to Wire Braid Angle (강선의 편조각도에 따른 고압호스의 응력변화 특성)

  • Kim, H.J.;Koh, S.W.;Kim, B.T.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.71-78
    • /
    • 2005
  • A high-pressure hose includes rebar layers of the synthetic fiber such as nylon or a steel wire to control internal pressure. The hose assembly is manufactured through the swaging process to clamp the hose into the metal fittings. Usually, the hose behavior is affected by the resultant of the longitudinal and circumferential forces produced by the internal pressure. The rebar layers can appear the most ideal rebar effect when they are arranged to the same direction as the resultant force. The braid angle applied in the rebar layers is an important factor in determining ultimate burst pressure and overall hose life. Failure can occur on the contacted parts of a hose with the metal fittings under severe operating conditions such as high pressure and temperature of the inner fluid. In this paper, the mechanical behavior between the hose and the metal fittings during the swaging process and the stress variation characteristics of a high-pressure hose under a constant applied pressure are analyzed with respect to the braid angle of steel wire using the finite element method.

  • PDF

A Study on Coolant and Roughness Variation in the Cold Rolling (냉간압연 가공시 압연유와 조도변화에 관한 연구)

  • 전언찬;김순경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1149-1157
    • /
    • 1995
  • The research for variation of coolant film thickness and separating force has been investigated following the examination for friction profile of work roll and roughness change of strip surface in rolling mill producting actual commercial products. The obtained results are as follows ; (1) Coolant film thickness in cold rolling has been increased relative to the circumferential velocity of work roll, and formation of coolant films has decreased with the smaller diameter of work roll. (2) Separating force is related to the formation of coolant film, and large separating force is needed to the formation of coolant film but it is constant after formation of appropriate film. (3) Wear and roughness alleviation of work roll is larger in bottom-roll than in top-roll on cold surface is larger in the direction of width than in roll direction, and changes of roughness and strip surface hardness rarely occurred after 3 passes.

Characteristic Comparison of Linear Thrust Forces for Magnet Wheels (자기 차륜의 선형 추력 특성 비교)

  • Shim, Ki-Bon;Jung, Kwang-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1353-1356
    • /
    • 2009
  • As a method obtaining linear thrust force for the magnet wheel producing a strong traction torque, the concept of magnetic shield is suggested and compared with the existing approaches. Specially, as the magnet wheel, in which the permanent magnets rotate mechanically instead of ac driving to make traveling field, is physically similar with the rotary induction motor, there is a periodical force ripple in tangential direction as well as normal direction. But, the force ripple can be suppressed from a shape change of the shield plate. Namely, the change brings out a change of entry and exit effect of the circumferential field for the magnet wheel. The feasibility of the shield concept is verified from simulation and experiment.

A Study for Rationalization of Lifting Lug Design of Ship Block (선박블록 탑재용 러그구조의 설계합리화를 위한 연구)

  • 함주혁
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.249-261
    • /
    • 1997
  • A basic study on the lifting lug design has performed through the rational and systematic process. In order to evaluate the proper design-load distribution around lug eye investigation of contact force between lifting lug and shackle pin is performed using non-linear parametric analysis idealized by gap element models. Gap element modeling and nonlinear analysis procedures are illustrated and discussed based on MSC/NASTRAN. Some analysis and design guides are suggested through the consideration of several important effects such as stress distribution pattern, circumferential contact force distribution along the lug eye face, loading share rate between lug main plate and doubler, effect of loading direction, relation between applied force and deflection and size effect of shackle pin radius. Additionally optimum design studies are performed and general trends according to the variation of design parameters are suggested.

  • PDF

Linear Actuator using Magnetic Shield of Rotating Magnet Wheel (부분 자기 차폐된 마그네트 휠의 선형구동기로의 응용)

  • Shim, Ki-Bon;Park, Jun-Kyu;Lee, Sang-Heon;Jung, Kwang-Suk
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.923-925
    • /
    • 2008
  • As known generally, when permanent magnets whose poles are upward and downward in order, arranged into the circumferential direction rotate under the conducting plate, the rotating force acts on the plate as well as the repulsive force. If the magnetic field by the magnet wheel(the above rotating permanent magnets) is partially shielded, the magnet wheel over open region can be a linear induction motor. The distinct feature from induction motor is that the traveling magnet field is produced by the moving permanent magnet instead of ac current. Furthermore, a variation of the open region changes the direction of the thrust force. In this paper, we introduce a concept of the linear actuator using the magnet wheel. Under the above shielding condition, a few simulation results and its verification from a simple test setup are described.

  • PDF

Input Power Estimation of Point Loaded Cylindrical Shell (원통형쉘 구조물의 점가진 입력파워 추정)

  • Lee, Kyoung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.250-257
    • /
    • 2011
  • The power input to an infinite cylindrical shell excited by a point force is investigated. The circumferential direction and axial direction of the cylindrical shell is assumed as a two-dimensional unbounded medium, and the point force is replaced as a periodic array of imaginary sources. The spatial Fourier transform is taken from the equation of motion of the cylindrical shell, which is derived from the static model of Donell-Mushtari-Vlasov. The inverse Fourier transform is taken to derive the vibration responses. Mobility from out-of-plane forces and in-plane forces are derived from the obtained vibration responses. The theory is applied to a cylindrical shell excited by a normal direction of point force.

  • PDF