• Title/Summary/Keyword: Circulation performance

Search Result 486, Processing Time 0.021 seconds

Development and evaluation of women's leggings prototype for improvement of blood circulation through flexible heating surface and gradual compression (점진적 컴프레션 및 유연면상발열을 통한 혈액순환 개선 여성 레깅스 프로토타입 개발 및 평가)

  • Jin Hee Hwang;Yun Ah Lee;Seung Hyun Jee;Sun Hee Kim
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.25 no.3
    • /
    • pp.53-67
    • /
    • 2023
  • Blood circulation is one of the most important life support functions of our body. It is essential to maintain healthy blood circulation as problems with blood circulation can lead to numerous diseases and serious complications. This study developed women's leggings with gradual compression and soft surface heating functions to improve blood circulation, and evaluated their performance and wearability. A silicon print pattern was developed to provide gradual compression, and a flexible heating surface coated with MWCNT (multi-walled carbon nanotube) conductive ink was fabricated for comfort and thermal effect. For the design, incision lines and materials were applied in consideration of aesthetic aspects, and design lines and colors were altered using a 3D program. The developed leggings showed that blood circulation can be improved when gradual compression and heating functions are simultaneously applied. Results were confirmed through measurements of clothing pressure, blood flow, and surface temperature. In the subjective wearability evaluation, it was confirmed that wearers felt gradual pressure, and they showed high satisfaction with wearability and design.

Development and performance test of a liquid nitrogen circulation pump for HTS power cable

  • Seok, Jihoon;Kim, Dongmin;Lee, Changhyeong;Kim, Manryeol;Choi, Jeongdong;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.3
    • /
    • pp.28-33
    • /
    • 2018
  • With the continuous performance improvement and commercialization of HTS wires, there have been many efforts to commercialize HTS power cables recently. Unlike conventional power cables, a cryogenic cooling system is required for a HTS power cable and a cryogenic pump is one of the essential components to circulate subcooled liquid nitrogen and cool the HTS power cable. Especially, the development of a reliable and high-efficiency cryogenic pump is an important issue for the commercialization of HTS power cables of several kilometers or more. In this study, we designed and fabricated a cryogenic pump for subcooled liquid nitrogen with a mass flow rate of 1.2 kg/s, a differential pressure of 5 bar, and evaluated the hydraulic performance of the pump. Impeller design was conducted to meet the target design performance with 1 D analysis model and CFD analysis. The pump performance parameters such as pressure heads, mass flow rates, and efficiencies in accordance with rotating speeds were assessed using a laboratory's performance evaluation system.

Numerical Study of Channel Area Effects on the Performance Characteristics of Regenerative Type Fuel Pump (재생형 연료펌프의 채널 면적 변화가 성능 특성에 미치는 영향에 대한 수치해석적 연구)

  • Lee, Kyoung-Yong;Choi, Young-Seok;Son, Kwang-Eun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.5
    • /
    • pp.41-45
    • /
    • 2007
  • The effects of channel area on the performance of regenerative type fuel pump were numerically studied by commercial CFD code (ANSYS CFX-10). To examine the effects of channel area, the shapes of the side channel and blade were simplified. The channel area affected the flow characteristics of the internal recirculation flow between the side channel and the blade groove and also made a difference in the overall performance. These loss mechanism with circulation flow were adopted as a loss coefficient in the performance prediction program. The loss coefficient was newly derived from the results of calculations with different channel area, and compared with the experimental results in the reference paper and used to modify the performance prediction program. The circulation flow characteristics with different channel area, which is related with loss mechanism, were also discussed with the results of 3-dimensional flow calculations.

Experimental and numerical assessment of helium bubble lift during natural circulation for passive molten salt fast reactor

  • Won Jun Choi;Jae Hyung Park;Juhyeong Lee;Jihun Im;Yunsik Cho;Yonghee Kim;Sung Joong Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1002-1012
    • /
    • 2024
  • To remove insoluble fission products, which could possibly cause reactor instability and significantly reduce heat transfer efficiency from primary system of molten salt reactor, a helium bubbling method is employed into a passive molten salt fast reactor. In this regard, two-phase flow behavior of molten salt and helium bubbles was investigated experimentally because the helium bubbles highly affect the circulation performance of working fluid owing to an additional drag force. As the helium flow rate is controlled, the change of key thermal-hydraulic parameters was analyzed through a two-phase experiment. Simultaneously, to assess the applicability of numerical model for the analysis of two-phase flow behavior, the numerical calculation was performed using the OpenFOAM 9.0 code. The accuracy of the numerical analysis code was evaluated by comparing it with the experimental data. Generally, numerical results showed a good agreement with the experiment. However, at the high helium injection rates, the prediction capability for void fraction of helium bubbles was relatively low. This study suggests that the multiphaseEulerFoam solver in OpenFOAM code is effective for predicting the helium bubbling but there exists a room for further improvement by incorporating the appropriate drag flux model and the population balance equation.

Hydraulic Design Optimization and Performance Analysis of a Centrifugal Blood Pump (원심형 혈액펌프의 최적화 수력설계 및 성능해석)

  • Park Moo Ryong;Yoo Seong Yeon;Oh Hyoung Woo;Yoon Eui Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.87-94
    • /
    • 2006
  • This paper presents the hydrodynamic design and performance analysis method for a miniaturized centrifugal blood pump using three-dimensional computational fluid dynamics (CFD) code. In order to obtain the hydraulically high efficient configuration of a miniaturized centrifugal blood pump for cardiopulmonary circulation, a well-established commercial CFD code was incorporated considering detailed flow dynamic phenomena in the blood pump system. A prototype of centrifugal blood pump developed by the present design and analysis method has been tested in the mock circulatory system. Predicted results by the CFD code agree very well with in vitro hydraulic performance data for a centrifugal blood pump over the entire operating conditions. Preliminary in vivo animal testing has also been conducted to demonstrate the hemodynamic feasibility for use of centrifugal blood pump as a mechanical circulatory support. A miniaturized centrifugal blood pump developed by the hydraulic design optimization and performance prediction method presented herein shows the possibility of a good candidate for intra and extracorporeal cardiopulmonary circulation pump in the near future.

Evaluation of the Annual Performance of the Direct Expansion Vertical Closed-Loop Ground Source Heat Pump (직접순환식 수직밀폐형 지열원 열펌프의 연간 운전성능 평가)

  • Kim, Min-Sung;Woo, Joung-Son;Baik, Young-Jin;Jang, Jea-Chul;Kim, Ji-Young;Ra, Ho-Sang
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.534-542
    • /
    • 2012
  • Vertical closed-loop ground source heat pump systems(GSHP) have been installed widely in Korea since it can extract moderate temperature level of geothermal heat in a small area. As a ground heat exchanger, a vertical closed-loop type with brine circulation is mostly preferred since it is simple and less harmful to ground environment. However, it requires a secondary heat exchange loop between the refrigerant in a heat pump and the brine. By adding a geothermal heat exchanger in the secondary heat exchange loop, circulation pumps should be attached and the temperature difference between refrigerant and ground is increased, which are important parts of performance degradation. In this paper, annual and seasonal performances of direct expansion(DX) geothermal heat pump were estimated mathematically as an alternative of classical indirect geothermal heat pump based on the annual performance evaluation. As a result, DX geothermal heat pump showed 43% higher annual performance than the classical U-tube geothermal heat pump.

  • PDF

Annual Performance Evaluation of Direct Expansion Vertical Closed-Loop Ground Source Heat Pump for Residential Application (주거용 직접순환식 수직밀폐형 지열원 열펌프의 연간 운전성능 평가)

  • Kim, Min-Sung;Baik, Young-Jin;Ra, Ho-Sang
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.114-122
    • /
    • 2012
  • Vertical closed-loop ground source heat pump systems(GSHP) have been installed widely in Korea since it can extract moderate temperature level of geothermal heat in a small area. As a ground heat exchanger, a vertical closed -loop type with brine circulation is mostly preferred since it is simple and less harmful to ground environment. However, it requires a secondary heat exchange loop between the refrigerant in a heat pump and the brine. By adding a geothermal heat exchanger in the secondary heat exchange loop, circulation pumps should be attached and the temperature difference between refrigerant and ground is increased, which are important parts of performance degradation. In this paper, annual and seasonal performances of direct expansion(DX) geothermal heat pump were estimated mathematically as an alternative of classical indirect geothermal heat pump based on the annual performance evaluation. As results, DX geothermal heat pump showed 43% higher annual performance than the classical U-tube geothermal heat pump.

EXPERIMENTS ON THE PERFORMANCE SENSITIVITY OF THE PASSIVE RESIDUAL HEAT REMOVAL SYSTEM OF AN ADVANCED INTEGRAL TYPE REACTOR

  • Park, Hyun-Sik;Choi, Ki-Yong;Choi, Seok;Yi, Sung-Jae;Park, Choon-Kyung;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.53-62
    • /
    • 2009
  • A set of experiments has been conducted on the performance sensitivity of the passive residual heat removal system (PRHRS) for an advanced integral type reactor, SMART, by using a high temperature and high pressure thermal-hydraulic test facility, the VISTA facility. In this paper the effects of the opening delay of the PRHRS bypass valves and the closing delay of the secondary system isolation valves, and the initial water level and the initial pressure of the compensating tank (CT) are investigated. During the reference test a stable flow occurs in a natural circulation loop that is composed of a steam generator secondary side, a secondary system, and a PRHRS; this is ascertained by a repetition test. When the PRHRS bypass valves are operated 10 seconds later than the secondary system isolation valves, the primary system is not properly cooled. When the secondary system isolation valves are operated 10 or 30 seconds later than the PRHRS bypass valves, the primary system is effectively cooled but the inventory of the PRHRS CT is drained earlier. As the initial water level of the CT is lowered to 16% of the full water level, the water is quickly drained and then nitrogen gas is introduced into the PRHRS, resulting in the deterioration of the PRHRS performance. When the initial pressure of the PRHRS is at 0.1MPa, the natural circulation is not performed properly. When the initial pressures of the PRHRS are 2.5 or 3.5 MPa, they show better performance than did the reference test.

Analysis of Customer Perception for Quality Attributes According to Consumers' Coffee Consumption Types (커피의 소비 유형별 품질 속성에 대한 고객 인식 분석)

  • Shin, Sun-Young;Chung, La-Na
    • Journal of the Korean Society of Food Culture
    • /
    • v.22 no.6
    • /
    • pp.748-756
    • /
    • 2007
  • The purposes of this study were to analyze importance and performance for coffee quality attributes based on customers according to their consumption types; and provided ideas and marketing strategies to increase sales through IPAs (Importance-Performance Analysis). University students in Incheon were conducted a survey from March 13, 2007 to March 31, 2007. As for a quality attribute with the highest importance, the survey showed 'price' was important for ${\ulcorner}$vending machine coffee${\lrcorner}$, and 'taste' was important for ${\ulcorner}$commercial coffee${\lrcorner}$, and ${\ulcorner}$coffee house coffee${\lrcorner}$. And 'thirst relief' was found to have the lowest importance for three types of coffee. As for a quality attributes with the highest performance, the survey showed 'taste' was important for ${\ulcorner}$coffee house coffee${\lrcorner}$ 'price' was important for ${\ulcorner}$vending machine coffee${\lrcorner}$; and 'period of circulation' was important for ${\ulcorner}$commercial coffee${\lrcorner}$. IPA results for coffee quality attributes also showed quality attributes that should be improved quickly for each type of coffee: 'hygiene', 'safety', 'period of circulation', and 'package' were for ${\ulcorner}$vending machine coffee${\lrcorner}$; 'price' and 'freshness' were for ${\ulcorner}$commercial coffee${\lrcorner}$; and 'price' and 'period of circulation' were for ${\ulcorner}$coffee house coffee${\lrcorner}$.

A Harmonic Circulation Current Reduction Method for Parallel Operation of UPS with a Three-Phase PWM Inverter

  • Kim Kyung-Hwan;Kim Wook-Dong;Hyun Dong-Suk
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.160-165
    • /
    • 2005
  • In a parallel operation of UPS, there are two types of circulating currents between UPS. One is the low order circulating current with a fundamental frequency caused by the amplitude and phase differences of UPS output voltages, and the other is the harmonic circulating current with PWM switching frequency caused by non-synchronized PWM waveforms among UPS. The elimination of the low order circulating current is essential for optimal load sharing in parallel operations of UPS, which can be accomplished by the phase and magnitude control at each UPS. The harmonic circulating current may cause troubles and deteriorate in performance of the controller for optimal load sharing in parallel operation of UPS. This paper presents a PWM synchronizing method to eliminate the harmonic circulation current in parallel operation of UPS. The effectiveness of the proposed scheme has been investigated and verified through experiments by a 50kVA UPS.