• Title/Summary/Keyword: Circulating fluidized bed

Search Result 188, Processing Time 0.033 seconds

A Study on Dioxin Reduction Characteristics of Rapid Cooling Type Circulating Fluidized Bed Heat Exchanger (급속냉각형 순환유동층 열교환기의 다이옥신 저감성능 연구)

  • Park, Sang-il
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1231-1236
    • /
    • 2008
  • The flow and heat transfer performance were measured at high temperatures in CFB heat exchanger with multiple risers and downcomers. The theoretical model for predicting heat exchanger performance was developed in this study. The model predictions were compared with the measured heat transfer rates to show relatively good agreement. The maximum gas cooling rate was $20,300^{\circ}C/sec$, and the dioxin reduction rate was 68%.

  • PDF

A Study on Prediction Model of Flow and Heat Transfer in the Circulating Fluidized Bed Heat Exchanger with Multiple Vertical Tubes (다관형 순환유동층 열교환기의 유동 및 전열성능 예측모델 연구)

  • Park, Sang-Il
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1199-1204
    • /
    • 2006
  • The pressure drop and heat transfer coefficient were measured at room temperature in CFB heat exchanger with multiple vertical tubes. Also the circulation rate of solid particles was measured. The theoretical model for predicting heat transfer coefficient using the solid flowrate was developed in this study. The model predictions were compared with the measured heat transfer coefficient to show relatively good agreement.

  • PDF

Combustion of RDF and RPF in a Lab-Scale Circulating Fluidized Bed (실험실규모 순환유동층에서 RDF와 RPF의 연소 특성에 관한 연구)

  • Lee, J.S.;Lee, E.L.;An, M.H.;Park, S.U.;Shin, D.H.;Hwang, J.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.173-179
    • /
    • 2004
  • Combustion of refuse derived fuel(RDF) and refuse plastic fuel (RPF) was carried out in a lab-scale circulating fluidized bed. Experiment was investigated cold flow visualization. RDF was made by C & tech and RPF was made by KRS. The results include distribution of temperature in the combustion chamber, and concentrations of flue gas such as $O_2$, $CO_2$, CO, $NO_x$ and HCs Micro G.C(gas chromatograph) was employed to find out concentration of He Temperature distribution was different when RDF and RPF were burnt respectably. As air ratio became increased, $CO_2$, CO, and total of HCs emissions were decreased. According to the number of carbon atom of HCs, HC were classified as five kinds of HC.

  • PDF

Riser Design Approach for Particle-Circulation-Type Heat Exchangers (입자 순환식 열교환기의 상승관 설계방법)

  • Jun Yong-Du
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.311-312
    • /
    • 2002
  • In this paper a systematic design approach to determine the optimum size (height) of circulating fluidized bed heat exchanger for exhaust gas heat recovery is prososed. Unlike the convensional heat exchangers where the length of the heat exchanger section is not very much emphasized, the vertical length of heat exchanger tube in the case of fluidized bed heat exchangers is important because this length determines the time interval during which particles reside and transfer heat in the heat exchanger section. For particles initial conditions are nearly stationary, accelerating particles motion should be considered rather than simply assuming fully developed condition. A way to estimate optimum tube length at different fluid velocity and particle sizes is suggested based on the required conditioning time for heat transfer from the flue gas to solid particles.

  • PDF

Circulting Fluidized Bed Combustion of Refuse Derived Fuel and Steam Production (폐기물 고형연료(RDF)의 순환유동층 연소 및 증기생산)

  • Shun, Do-Won;Bae, Dal-Hee;Cho, Sung-Ho;Lee, Seung-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.613-616
    • /
    • 2007
  • A pilot scale circulating fluidized bed for refuse derived fuel is developed and constructed in order to demonstrate efficient and safe utilization of waste fuel. The capacity of the facility is 8 steam tons per hour with the steam quality of $450^{\circ}C$ and 38atm. The quantity and the quality of the produced steam is sufficient to produce 1MWe power capacity. The test operation proved the high combustion efficiency of 99% and up. The emissions of NOx, SOx in flue gas are below 100, 60ppm respectively with out any emission control. HCl emissions were above 400ppm at the combustor exit but reduced below 10ppm after scrubber.

  • PDF

A Circulating Fluidized Bed Boiler Control (순환 유동층 보일러 제어)

  • Kim, Eung-Seok;Lee, Chan-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.722-724
    • /
    • 1998
  • One of the major concerns of our time is the need to use energy economically and rationally while at the same time, protecting the environment. Circulating Fluidized Bed(CFB) Boilers represent a proven, very attractive clean coal technology, with the added advantage of an unusual fuel flexibility CFB boiler is the best available compromise between cost and environment for fossil fuel power plant. This paper briefly describes CFB process and 200MW CFB boiler for Tonghae power plant. Also, discussed are differences between the control process of fluidized bed and conventional boilers, and applied control process for Tonghae power plant.

  • PDF

Circulating Fluidized Bed Combustion of Korean Anthracite and Fabricated Anthracite Fines (국내 무연탄과 미분을 성형한 무연탄의 순환유동층 연소)

  • Shun, Do-Won;Bae, Dal-Hee;Oh, Chang-Sup;Kim, Heon-Chang
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.553-558
    • /
    • 2010
  • To solve the problems of the low combustion activity of Korean anthracite and the abundant loss of unburned carbon in fly ash, pellet coal was fabricated from coal fines and fly ash, and the mixed combustion of coarse coal with the pellet coal was examined in the circulating fluidized bed combustor of a 0.1 MW scale test unit. In the combustion of the raw coal only, the significant amount of coal fines was entrained, resulting in overheat at the top of the combustor. With the coarse coal that most fines were eliminated, however, the combustion temperature was maintained stable. The mixed combustion of coarse and raw coals was also feasible even though it often went unstable. The mixed combustion of the coarse coal with the pellet coal was as stable as the coarse coal combustion, showing a promise that the combustion of the Korean anthracite in commercial circulating fluidized bed boilers could be further enhanced.

Feasibility Study on the Use of CFBC Ash as Non-sintered Binder (순환유동층 보일러애시를 활용한 비소성 결합재로써의 활용 가능성 검토)

  • Kang, Yong Hak;Lim, Gwi Hwan;Kim, Sang Jun;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.119-126
    • /
    • 2018
  • Recently, the production of circulating fluidized bed combustion ash has been increased in thermal power plants. The addition of limestone for the desulfurizing effect of circulating fluidized bed boiler ash increases the content of CaO and $SO_3$ contained in ash, which is higher than the free fly ash in general fly ash. Unlike conventional fly ash, the circulating fluidized bed combustion ash has a high reactivity when it comes into contact with water due to its hydraulic properties and high free-CaO content. The aim of this study is to investigate the possibility of non-sintered binder by using self-cementing properties of circulating fluidized bed combustion ash. The mechanical and hydration characteristics were investigated according to the content of CFBC ash. In addition, the effects of gymsum type and content on the compressive strength and micro-structure of non-sintered binder pastes.

Numerical Study on the Process Analysis of Biomass Fast Pyrolysis in a Circulating Fluidized Bed (순환유동층 반응기내 바이오매스의 급속열분해 공정해석에 관한 수치해석적 연구)

  • Lee, Yu Ri;Park, Hoon Chae;Choi, Myung Kyu;Choi, Hang Seok
    • Journal of Korea Society of Waste Management
    • /
    • v.34 no.5
    • /
    • pp.518-527
    • /
    • 2017
  • The development of renewable energy is currently strongly required to address environmental problems such as global warming. In particular, biomass is highlighted due to its advantages. When using biomass as an energy source, the conversion process is essential. Fast pyrolysis, which is a thermochemical conversion method, is a known method of producing bio-oil. Therefore, various studies were conducted with fast pyrolysis. Most studies were conducted under a lab-scale process. Hence, scaling up is required for commercialization. However, it is difficult to find studies that address the process analysis, even though this is essential for developing a scaled-up plant. Hence, the present study carries out the process analysis of biomass pyrolysis. The fast pyrolysis system includes a biomass feeder, fast pyrolyzer, cyclone, condenser, and electrostatic precipitator (ESP). A two-stage, semi-global reaction mechanism was applied to simulate the fast pyrolysis reaction and a circulating fluidized bed reactor was selected as the fast pyrolyzer. All the equipment in the process was modeled based on heat and mass balance equations. In this study, process analysis was conducted with various reaction temperatures and residence times. The two-stage, semi-global reaction mechanism for circulating fluidized-bed reactor can be applied to simulate a scaled-up plant.