• Title/Summary/Keyword: Circulating flow rate

Search Result 102, Processing Time 0.025 seconds

Performance Simulation of Natural Circulating Cooling System of SF6 Gas Charged Transformer (SF6 가스를 충전한 변압기의 자연순환 냉각시스템의 성능시뮬레이션)

  • Choi, Y.D.;Huh, C.S.;Kim, J.G.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.1
    • /
    • pp.54-65
    • /
    • 1994
  • Performance of naturally circulating cooling system of $SF_6$ gas charged transformer was simulated and the variations of gas flow rate, maximum coil temperature, gas temperature and cooling air temperature were investigated with respect to the height of radiator, interplates distance and heat generation rate at core. The results show that the height of radiator most significantly affects the performance of natural circulating cooling system of transformer.

  • PDF

A Study on Dioxin Reduction Characteristics of Rapid Cooling Type Circulating Fluidized Bed Heat Exchanger (급속냉각형 순환유동층 열교환기의 다이옥신 저감성능 연구)

  • Park, Sang-il
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1231-1236
    • /
    • 2008
  • The flow and heat transfer performance were measured at high temperatures in CFB heat exchanger with multiple risers and downcomers. The theoretical model for predicting heat exchanger performance was developed in this study. The model predictions were compared with the measured heat transfer rates to show relatively good agreement. The maximum gas cooling rate was $20,300^{\circ}C/sec$, and the dioxin reduction rate was 68%.

  • PDF

Axial Solid Holdup in a Circulating Fluidized Bed Plasma Reactor under Reduced Pressure (감압 순환유동층 플라즈마 반응기의 축방향 고체체류량)

  • Park, Sounghee
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.527-532
    • /
    • 2016
  • The effects of gas velocity and solid circulation rate on the axial solid holdup distribution have been determined in a 10 mm-I.D. ${\times}$ 800 mm-high circulating fluidized bed plasma reactor under reduced pressure (1torr). Polystyrene polymer powder and nitrogen gas are used as solid and gas materials respectively. The change of solid circulation rate by a large gas flow rate of the riser (40~80 sccm) is also possible by a relatively small gas flow rate of the solid recirculation part (6.6~9.9 sccm). The solid circulation rate in the reactor under reduced pressure increases with increasing aeration velocity in the solid recirculation part. The axial solid holdup in the riser decreases from the dense at the bottom to the dilute phase at the top section of the riser. Solid holdups at the axial positions in the riser increase linearly with increasing solid circulating velocity. From these results, we could determine the position of plasma load for good plasma ignition, maintain and plasma reaction.

Measurement of Heat Transfer Rates and Pressure Drops in a Solid Particle Circulating Fluidized Heat Exchanger (고체입자 순환유동층 열교환기의 열전달률 및 압력강하 측정)

  • 이금배;전용두;박상일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.817-824
    • /
    • 2000
  • The fluidized solid particles not only increase heat transfer rates but have a cleaning function eliminating contaiminated substances caused from condensate water. An experiment was performed to measure heat transfer rates and pressure drops in a fluidized heat exchanger with circulating solid particle for constant heat transfer rate. As a results, the heat transfer rate increased by 26.9~2.6%, heat transfer coefficient by 11.9~2.7%, and pressure drop by 79.1~10.9% at the gas velocity of 6.1 ~12.1 m/s and solid particle flow rate of 100~50 kg/h with the heat exchanger of H: 50 mm, $D_p=2 in,\; and\;D_{BP}$=30 mm.

  • PDF

Circulating Concurrent-flow Drying Simulation of Rapeseed (순환식 병류형 유채씨 건조 시뮬레이션)

  • Han, Jae-Woong;Keum, Dong-Hyuk;Kim, Woong;Duc, Le Anh;Cho, Sung-Ho;Kim, Hoon
    • Journal of Biosystems Engineering
    • /
    • v.35 no.6
    • /
    • pp.401-407
    • /
    • 2010
  • In this study, computer simulations were conducted to assess the use of a circulating concurrent-flow dryer for rapeseed drying and to determined the effect of this drying method on the germination ratio of rapeseed after the drying process was complete. The simultaneous heat and mass transfer between air and rapeseed in a concurrent-flow dryer was examined by simulation. The drying simulation was based on several parameters with sequent time series. Equations concerning air psychrometrics, physical properties, thermal properties, equilibrium moisture content, thin layer drying of rapeseed, etc. were all combined to solve the simulation models. Based on energy and mass transfer in the concurrent-flow drying model, a simulation program for the circulating concurrent-flow rapeseed dryer was built along with a detailed description of the mathematical solution to the model. A pilot scale circulating concurrent-flow dryer(200 kg/batch) was used to verify the fitness of the simulation program. A comparison between the experimental data and the model predicted results was presented and discussed. The drying parameters and germination ratio were analyzed and the accuracy of the simulation program was evaluated. The simulation program proved to be reliable and was shown to be a convenient tool for predicting rapeseed drying and germination ratio of rapeseed in a concurrent-flow dryer.

Fluid Flow Characteristics in the Aquaculture Tank for a Breeding Fish

  • Jeong, Hyo-Min;Chung, Han-Shik;Kim, Se-Hyun;Choi, Seuk-Cheun;Bae, Kang-Youl
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2265-2272
    • /
    • 2004
  • The aquaculture tank is used for breeding fish in sea water which was pumped up to land. The flow characteristics in the aquaculture were investigated with varying the tank geometry and flow rate. The numerical analysis has been employed for calculating the velocity and temperature distributions in a water tank of rectangular type. The finite volume method and SIMPLE algorithm with 3-dimensional standard $\kappa$-$\varepsilon$ turbulence model were used for the numerical analysis. For comparison with experimental results, the PIV system was applied to visualize the flow patterns quantitatively. The numerical results showed good agreements with the experimental results. The mean velocity and temperature versus aquarium depth were represented for various circulating flow rates. Especially, the aquaculture environment is recommended that the aquarium depth has to be d=0.5 m, and this case is the condition of higher velocity and temperature in winter season.

Influence of the Secondary Fluid Flow Rate on the Performance of a GSHP System (지중 순환수 유량 변화에 따른 지열원 히트펌프 시스템의 성능 특성 연구)

  • Lee, Jun-Yub;Chung, Jin-Taek;Woo, Jung-Son;Choi, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.649-656
    • /
    • 2010
  • The aim of this study is to investigate the influence of the secondary fluid flow rate through GLHX on a GSHP system with vertical single U-tube type GLHXs. The COP of a GSHP system with large flow rate was lower than it with small flow rate due to large power consumption of ground loop circulating pump. It is suggested that the heat pump unit with high COP and low flow rate through the GLHX have to be selected in order to enhance the performance of the system and reduce the length of GLHX.

A Study on the Geothermal Heat Pump System Performance Analysis according to Water Flow Rate Control of the Geothermal Water Circulation Pump (지열순환펌프 유량변화에 따른 지열히트펌프시스템의 에너지 성능 평가)

  • Jung, Young-Ju;Jo, Jae-Hun;Kim, Yong-Shik;Cho, Young-Hum
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.103-109
    • /
    • 2014
  • It is important to control the amount of supply water flow rate at all kinds of HVAC systems in order to maintain IAQ and energy efficiency. The most of buildings installed geothermal heat pumps is using fixed water flow rate in spite of the excellent performance of geothermal heat pumps. Especially when the air-conditioning load is low, the flow rate control may be possible to save energy to operate. However, it is effective to apply the variable flow control system in order to reduce energy consumption. Therefore, the purpose of this study, change a water flow rate and improve the whole performance of the geothermal heat pump. Geothermal heat pump system is modeled after the selection of the applied building, by setting the flow rate control to be analyzed through a simulation of performance evaluation. Building energy saving according to the flow rate of the ground circulating water analyze quantitatively and to investigate the importance of the flow control.

A Study on Prediction Model of Flow and Heat Transfer in the Circulating Fluidized Bed Heat Exchanger with Multiple Vertical Tubes (다관형 순환유동층 열교환기의 유동 및 전열성능 예측모델 연구)

  • Park, Sang-Il
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1199-1204
    • /
    • 2006
  • The pressure drop and heat transfer coefficient were measured at room temperature in CFB heat exchanger with multiple vertical tubes. Also the circulation rate of solid particles was measured. The theoretical model for predicting heat transfer coefficient using the solid flowrate was developed in this study. The model predictions were compared with the measured heat transfer coefficient to show relatively good agreement.

  • PDF

A Numerical Study on the Automotive Torque Converter(Part I) - Hydraulic Design and Evaluation of Circulation Flow Rate - (자동차용 토크 컨버터의 수치해석적 연구(Part I) - 수력학적 설계와 순환유량의 평가 -)

  • 김홍식;박재인;주원구;조강래
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.28-36
    • /
    • 1998
  • In order to establish the hydraulic design process of the torque converter, pump, turbine and stator were designed by reverse design method including one dimensional analysis, angular momentum distribution and forced vortex design. And the significance of evaluation of the circulation flow rate in torus of the torque converter was verified by numerical calculation if the combined blade rows of pump and turbine. It was confirmed that the computational method using interrow mixing model by Park and Cho was reliable to predict the flow-field and performance of the torque converter.

  • PDF