• 제목/요약/키워드: Circular-tube

검색결과 555건 처리시간 0.023초

Experiment of Compressive Strength Enhancement of Circular Concrete Column Confined by Carbon Tubes

  • Hong Won-Kee;Kim Hee-Cheul;Yoon Suk-Han
    • KCI Concrete Journal
    • /
    • 제14권4호
    • /
    • pp.139-144
    • /
    • 2002
  • Concrete filled FRP tube has lately attracted attention as the member that can substitute the conventional reinforced concrete. Glass fiber and carbon fiber are some of available materials for FRP tube. Carbon tube is filament wound with specified winding angle to meet the appropriate capacity demands. Confinement effect of carbon tube is varied according to winding angle. In this study, a total 4 of large scale circular specimens of 30cm diameter and 60cm height is tested. To estimate the effect of winding angle and thickness of carbon tube on the increased confined compressive strength, the test tube are wound with $\pm45^{\circ}\;and\;\pm30^{\circ}$ with two types of thickness, 2mm and 3mm, respectively. It is shown that effectively increased confined strength and ductility are observed from the specimens with $\pm45^{\circ}$ winding angle than $\pm30^{\circ}$ winding angle. Increasing thickness is not as effective as adjusting winding angle for the confinement of concrete core.

  • PDF

원형 관 내부에서의 3차원 데토네이션 파의 동적모형 (Three-dimensional Detoantion Wave Dynamics in a Circular Tube)

  • 조덕래;원수희;신재렬;최정열
    • 한국추진공학회지
    • /
    • 제12권3호
    • /
    • pp.68-75
    • /
    • 2008
  • 이전에 개발된 병렬 해석 코드를 이용하여 원형 관내에서의 삼차원 데토네이션 파 전파 특성을 관찰 하였다. 일련의 해석을 통하여 직경이 일정한 원형 관에서 반응 속도 상수 값 k에 의존하는 데토네이션 셀 생성 메커니즘을 알 수 있었다. 삼차원 유동에 대한 비정상 유동의 해석 결과는 two-, three-, four-cell 구조의 메커니즘을 잘 보여주었으며, 반응속도 상수 k가 증가함에 따라 생성되는 셀 수가 증가하고 셀의 폭과 길이는 감소하였다. 모든 다중-셀 모드에서 데토네이션 파의 구조와 그을음막 기록은 횡단파의 움직임에 의하여 만들어지며, 데토네이션 파면은 주기적으로 일정한 다각형 및 풍차 형상을 가지게 된다.

Behavior of circular concrete-filled steel tubular columns under pure torsion

  • Ding, Fa-xing;Fu, Qiang;Wen, Bing;Zhou, Qi-shi;Liu, Xue-mei
    • Steel and Composite Structures
    • /
    • 제26권4호
    • /
    • pp.501-511
    • /
    • 2018
  • Concrete-filled steel tubular (CFT) columns are commonly used in engineering structures and always subjected to torsion in practice. This paper is thus devoted to investigate the mechanical behavior of circular CFT columns under pure torsion.3D finite element models based on reasonable material constitutive relation were established for analyzing the load-strain ($T-{\gamma}$) curves of circular CFT columns under pure torsion. The numerical simulation indicated that local bulking of the steel tube in CFT columns was prevented and the shear strength and ductility of the core concrete were significantly improved due to the confinement effect between the steel tube and the core concrete. Based on the results, formulas to predict the torsional ultimate bearing capacity of circular CFT columns were proposed with satisfactory correspondence with experimental results. Besides, formulas of composite shear stiffness and the overall process of the $T-{\gamma}$ relation of circular CFT columns under pure torsion were proposed.

Fin이 부착된 원관내를 통과하는 층류 유동해석 (Analysis of Laminar Flow Through Internally Finned Tube)

  • 정호열;정재택
    • 설비공학논문집
    • /
    • 제14권3호
    • /
    • pp.254-260
    • /
    • 2002
  • There have been many studies for the flow through internally finned tube, since the heat exchangers with fin device derive much attention in heat transfer enhance cent. In this study, analysis of laminar flow through the circular tube with longitudinal fins are investigated. The height and the number of fins are arbitrary. The flow field is assumed to be laminar and conformal mapping is used to obtain analytic solution. From the analytic solution, equi-velocity lines are shown, and the flow rate through the finned tube is calculated for various fin heights and numbers of fins. Darcy friction factor for this finned tube and shear stress distributions on the wall and fin are also considered.

관 단면형상 변화에 따른 열전달 특성에 관한 수치해석적 연구 (Numerical Study for Heat Transfer Characteristics Varying Cross-Sectional Shape of a Tube)

  • 박훈채;최항석;김석준
    • 설비공학논문집
    • /
    • 제24권7호
    • /
    • pp.560-566
    • /
    • 2012
  • Numerical study has been carried out to investigate heat transfer and pressure drop characteristics for streamlined shape tubes. The flow and thermal fields are investigated with varying diameter ratio of the tube ranging from 0.4 to 2.5 and Reynolds number ranging from 10,000 to 30,000. The results show that heat transfer per unit fan power is maximum at $D_2/D_1=0.8$. Furthermore, the heat transfer per unit fan power of streamlined shape tubes was compared with circular tube. The heat transfer per unit fan power of streamlined shape tube was larger than that of circular tube.

Numerical analysis of circular steel tube confined UHPC stub columns

  • Hoang, An Le;Fehlinga, Ekkehard
    • Computers and Concrete
    • /
    • 제19권3호
    • /
    • pp.263-273
    • /
    • 2017
  • In this paper, a finite element model (FEM) in ATENA-3D software was constructed to investigate the behavior of circular ultra high performance concrete (UHPC) filled steel tube stub columns (UHPC-FSTCs) under concentric loading on concrete core. The "CC3DNonLinCementitious2User" material type for concrete in ATENA-3D software with some modifications of material laws, was adopted to model for UHPC core with consideration the confinement effect. The experimental results obtained from Schneider (2006) were then employed to verify the accuracy of FEM. Extensive parametric analysis was also conducted to examine the influence of concrete compressive strength, steel tube thickness and steel yield strength on the compressive behavior of short circular UHPC-FSTCs. It can be observed that the columns with thicker steel tube show better strength and ductility, the sudden drop of load after initial peak load can be prevented. Based on the regression analysis of the results from parametric study, simplified formulae for predicting ultimate loads and strains were proposed and verified by comparing with previous analytical models, design codes and experimental results.

Experimental study on creep behavior of fly ash concrete filled steel tube circular arches

  • Yan, Wu T.;Han, Bing;Zhang, Jin Q.;Xie, Hui B.;Zhu, Li;Xue, Zhong J.
    • Steel and Composite Structures
    • /
    • 제27권2호
    • /
    • pp.185-192
    • /
    • 2018
  • Fly ash can significantly improve concrete workability and performance, and recycling fly ash in concrete can contribute to a cleaner environment. Since fly ash influences pozzolanic reactions in concrete, mechanical behaviors of concrete containing fly ash differ from traditional concrete. Creep behaviors of fly ash concrete filled steel tube arch were experimentally investigated for 10% and 30% fly ash replacement. The axes of two arches are designed as circular arc with 2.1 m computed span, 0.24 m arch rise, and their cross-sections are all in circular section. Time dependent deflection and strain of loading and mid-span steel tube were measured, and long term deflection of the model arch with 10% fly ash replacement was significantly larger than with 30% replacement. Considering the steel tube strain, compressive zone height, cross section curvature, and internal force borne by the steel tube, the compressive zone height and structural internal forces increased gradually over time due to concrete creep. Increased fly ash content resulted in more significant neutral axis shift. Mechanisms for internal force effects on neutral axis height were analyzed and verified experimentally.

Numerical analysis and eccentric bearing capacity of steel reinforced recycled concrete filled circular steel tube columns

  • Ma, Hui;Liu, Fangda;Wu, Yanan;Cui, Hang;Zhao, Yanli
    • Advances in concrete construction
    • /
    • 제13권 2호
    • /
    • pp.163-181
    • /
    • 2022
  • To study the mechanical properties of steel reinforced recycled concrete (SRRC) filled circular steel tube columns under eccentric compression loads, this study presents a finite element model which can simulate the eccentrically compressed columns using ABAQUS software. The analytical model was established by selecting the reasonable nonlinear analysis theory and the constitutive relationship of materials in the columns. The influences of design parameters on the eccentric compressive performance of columns were also considered in detail, such as the diameter-thickness ratio of circular steel tube, replacement percentage of recycled coarse aggregate (RCA), slenderness ratio, eccentricity, recycled aggregate concrete (RAC) strength and steel strength and so on. The deformation diagram, stress nephogram and load-displacement curves of the eccentrically compressed columns were obtained and compared with the test results of specimens. The results show that although there is a certain error between the calculation results and the test results, the error is small, which shows the rationality on the numerical model of eccentrically compressed columns. The failure of the columns is mainly due to the symmetrical bending of the columns towards the middle compression zone, which is a typical compression bending failure. The eccentric bearing capacity and deformation capacity of columns increase with the increase of the strength of steel tube and profile steel respectively. Compared with profile steel, the strength of steel tube has a greater influence on the eccentric compressive performance of columns. Improving the strength of RAC is beneficial to the eccentric bearing capacity of columns. In addition, the eccentric bearing capacity and deformation capacity of columns decrease with the increase of replacement percentage of RCA. The section form of profile steel has little influence on the eccentric compression performance of columns. On this basis, the calculation formulas on the nominal eccentric bearing capacity of columns were also put forward and the results calculated by the proposed formulas are in good agreement with the test values.

Composite action of notched circular CFT stub columns under axial compression

  • Ding, Fa-xing;Wen, Bing;Liu, Xue-mei;Wang, Hai-bo
    • Steel and Composite Structures
    • /
    • 제24권3호
    • /
    • pp.309-322
    • /
    • 2017
  • This paper conducted both numerical and theoretical studies to investigate the composite action of notched circular concrete-filled steel tubular (CFT) stub columns under axial compression and established a theoretical method to predict their ultimate bearing capacity. 3D finite element (FE) analysis was conducted to simulate the composite action and the results were in good agreement with experimental results on circular CFT stub columns with differently oriented notches in steel tubes. Parametric study was conducted to understand the effects of different parameters on the mechanical behavior of circular CFT stub columns and also the composite action between the steel tube and the core concrete. Based on the results, a theoretical formula was proposed to calculate the ultimate bearing capacity of notched CFT stub columns under compression with consideration of the composite action between the steel tube and the core concrete.

폴리머 원형 튜브 대상 미세 패턴 정수압 성형 (Micro Pattern Forming on Polymeric Circular Tubes by Hydrostatic Pressing)

  • 임성한
    • 소성∙가공
    • /
    • 제23권8호
    • /
    • pp.507-512
    • /
    • 2014
  • The objective of the current investigation is to establish techniques in micro pattern forming operations of polymeric circular tubes by using hydrostatic pressing. This method was developed and successfully applied to the micro pattern forming on polymeric plates. The key idea of the new technique is to pressurize multiple vacuum-packed substrate-mold stacks above the glass transition temperature of the polymeric substrates. The new process is thought to be a promising micro-pattern fabrication technique for two reasons; first, (hydro-) isostatic pressing ensures a uniform micro-pattern replicating condition regardless of the substrate area and thickness. Second, multiple curved substrates can be patterned at the same time. With the prototype forming machine for the new process, micro prismatic array patterns, 25um in height and 90 degrees in apex angle, were successfully made on the PMMA circular tubes with diameters of 5~40mm. These results show that this process can be also used in the micro pattern forming process on curved plates such as circular tube.