• Title/Summary/Keyword: Circular tube

Search Result 554, Processing Time 0.029 seconds

The Experimental Study on the Seismic Strengthening Effect of FRP Circular Tube on the Circular Bridge Piers (기존 교각의 FRP 원통관을 이용한 내진보강의 실험연구)

  • 황윤국;윤순종;김정호;최영민;박경훈;권태규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.973-978
    • /
    • 2003
  • This paper describes the experimental study on seismic strengthening effect of circular bridge columns with poor lap-splice details using FRP(Fiber Reinforced Plastic) wrapping, The as-built column suffered brittle failure due to the deterioration of lap-spliced longitudinal reinforcement without developing its flexural capacity or any ductility, The strengthening columns using FRP wrapping showed significant improvement in seismic performance due to FRP's confinement effect.

  • PDF

A Study on the Characteristics of Lift Fluctuation Power Spectral Density in a Heat Exchanger Tube Array (전열관군에서 양력 변동의 PSD 특성 연구)

  • Ha, Ji-Soo;Lee, Boo-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6641-6646
    • /
    • 2015
  • Heat exchanger tube array in a heat recovery steam generator is exposed to the hot exhaust gas flow and it could cause the flow induced vibration, which could damage the heat exchanger tube array. It is needed to establish the characteristics of flow induced vibration in the tube array for the structural safe operation of the heat exchanger. Several researches for the flow induced vibration of typical heat exchangers had been conducted and the nondimensional PSD(Power Spectral Density) function with the Strouhal number, fD/U, had been derived by experimental method. The present study examined the results of the previous experimental researches for the nondimensional PSD characteristics by CFD analysis and the basis for the application of flow induced vibration to the heat recovery steam generator tube array would be prepared from the present CFD analysis. For the previous mentioned purpose, the present CFD analysis introduced circular cylinder tube array and calculated with the unsteady laminar flow for the tube array. The characteristics of lift fluctuation over the cylinder tube array was investigated. The derived nondimensional PSD was compared with the results of the previous experimental researches and the characteristics of lift PSD for circular cylinder tube array was established from the present CFD study.

Assessment of stress-strain model for UHPC confined by steel tube stub columns

  • Hoang, An Le;Fehling, Ekkehard
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.371-384
    • /
    • 2017
  • Ultra high performance concrete (UHPC) has recently been applied as an alternative to conventional concrete in construction due to its extremely high compressive and tensile strength, and enhanced durability. However, up to date, there has been insufficient information regarding the confinement behavior of UHPC columns. Therefore, this study aims to perform an assessment of axial stress-strain model for UHPC confined by circular steel tube stub columns. The equations for calculating the confined peak stress and its corresponding strain of confined concrete in existing models suggested by Johansson (2002), Sakino et al. (2004), Han et al. (2005), Hatzigeorgiou (2008) were modified based on the regression analysis of test results in Schneider (2006) in order to increase the prediction accuracy for the case of confined UHPC. Furthermore, a new axial stress-strain model for confined UHPC was developed. To examine the suitability of the modified models and the proposed model for confined UHPC, axial stress-strain curves derived from the proposed models were compared with those obtained from previous test results. After validating the proposed model, an extensive parametric study was undertaken to investigate the effects of diameter-to-thickness ratio, steel yield strength and concrete compressive strength on the complete axial stress-strain curves, the strength and strain enhancement of UHPC confined by circular steel tube stub columns.

Study on velocity profiles around spiral baffle plates in a horizontal circular tube without inner tubes

  • Chang, Tae-Hyun;Lee, Kwon-Soo;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.403-411
    • /
    • 2016
  • Usually shell and tube heat exchangers are employed to recover energy between fluids. Recently, numerous papers on these heat exchangers have been published; however, the velocity and temperature profiles or comparison of the features of the flow with or without inside tubes have rarely been described. In this research, experimental and numerical studies were carried out to investigate the characteristics of the flow around the spiral baffle plates without inside tubes in a horizontal circular tube using a particle image velocimetry method and ANSYS 14.0~15.0 version (Fluent). The results showed that swirling flow was produced between the spiral baffle plates. The tangential components were strong between the two spiral baffles; however, the axial or radial velocities components were indicating nearly zero. From the spiral motion in the space of the two baffles, it is considered that there were no dead zones between the spiral baffle.

Characteristics of Near Wake Behind a Circular Cylinder with Serrated fins (IV) - Comparison of Vortex Formation Regions - (톱니형 휜이 부착된 원주의 근접후류특성 연구 (IV) - 와형성영역의 유동비교 -)

  • Ryu, Byong-Nam;Kim, Kyung-Chun;Boo, Jung-Sook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.357-366
    • /
    • 2003
  • An experimental study is performed to investigate characteristics of near of wakes of circular cylinders with serrated fins using a hot-wire anemometer for various freestream velocities. The main focus of this paper is to investigate a reason why a vortex formation length is increased suddenly. Velocity of the fluid which flow through fins decreases as fin's height and freestream velocity increases and fin pitch decreases, and a thickness of boundary layer increases. The finned tube has a lower velocity gradient when the higher boundary layer grows. This velocity gradient on finned tube makes a weak shear force in the wake and moves to downstream in a state of lower momentum transfer between the freestream and the wake. The phenomenon makes a vortex formation length increased suddenly. The fluctuations of the velocity distributions on the finned tube and (equation omitted) = 1.0 contour line in the vortex formation region decreases when the fin height increases and the pitch decreases.

Composite action of hollow concrete-filled circular steel tubular stub columns

  • Fu, Qiang;Ding, Fa-xing;Zhang, Tao;Wang, Liping;Fang, Chang-jing
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.693-703
    • /
    • 2018
  • To better understand the influence of hollow ratio on the hollow concrete-filled circular steel tubular (H-CFT) stub columns under axial compression and to propose the design formula of ultimate bearing capacity for H-CFT stub columns, 3D finite element analysis and laboratory experiments were completed to obtain the load-deformation curves and the failure modes of H-CFT stub columns. The changes of the confinement effect between core concrete and steel tube with different hollow ratios were discussed based on the finite element results. The result shows that the axial stress of concrete and hoop stress of steel tube in H-CFT stub columns are decreased with the increase of hollow ratio. AfteGr the yield of steel, the reduction rate of longitudinal stress and the increase rate of circumferential stress for the steel tube slowed down. The confinement effect from steel tube on concrete also weakened slowly with the increase of hollow ratio. Based on the limit equilibrium method, a simplified formula of ultimate bearing capacity for the axially loaded H-CFT stub columns was proposed. The predicted results showed satisfactory agreement with the experimental and numerical results.

Axial compression behavior of circular recycled concrete-filled steel tubular short columns reinforced by silica fume and steel fiber

  • Chen, Juan;Liu, Xuan;Liu, Hongwei;Zeng, Lei
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.193-200
    • /
    • 2018
  • This paper presents an experimental work for short circular steel tube columns filled with normal concrete (NAC), recycled aggregate concrete (RAC), and RAC with silica fume and steel fiber. Ten specimens were tested under axial compression to research the effect of silica fume and steel fiber volume percentage on the behavior of recycled aggregate concrete-filled steel tube columns (RACFST). The failure modes, ultimate loads and axial load- strain relationships are presented. The test results indicate that silica fume and steel fiber would not change the failure mode of the RACFST column, but can increase the mechanical performances of the RACFST column because of the filling effect and pozzolanic action of silica fume and the confinement effect of steel fiber. The ultimate load, ductility and energy dissipation capacity of RACFST columns can exceed that of corresponding natural aggregate concrete-filled steel tube (NACFST) column. Design formulas EC4 for the load capacity NACFST and RACFST columns are proposed, and the predictions agree well with the experimental results from this study.

A review and analysis of circular UHPC filled steel tube columns under axial loading

  • Hoang, An Le;Fehling, Ekkehard
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.417-430
    • /
    • 2017
  • Ultra high performance concrete (UHPC) has aroused interest around the world owing to superior mechanical and durability properties over conventional concrete. However, the application of UHPC in practice poses difficulties due to its inherent brittleness. UHPC filled in steel tube columns (UHPC-FSTCs) are capable of restricting the brittle failure of non-reinforced UHPC columns and forming a high performance member with enhancement of strength and ductility. Currently, research on UHPC-FSTCs remains very limited and there is relatively little information about the mechanical behavior of these columns. Therefore, this study presents a review of past experimental studies to have a deeper insight into the compressive behavior of UHPC-FSTCs under axial loading on entire section and on concrete core. Based on the test results obtained from Schneider (2006) and Xiong (2012), an analysis was conducted to investigate the influence of the confinement index (${\xi}$) and diameter to steel tube thickness ratio (D/t) on the strength and the ductility in short circular UHPC-FSTCs. Furthermore, the appropriateness of current design codes including EC4, AISC, AIJ and previous analytical models for estimating the ultimate loads of composite columns was also examined by the comparison between the predictions and the test results. Finally, simplified formulae for predicting the ultimate loads in two types of loading pattern were proposed and verified.

Residual strength capacity of fire-exposed circular concrete-filled steel tube stub columns

  • Alhatmey, Ihssan A.;Ekmekyapar, Talha;Alrebeh, Salih K.
    • Advances in concrete construction
    • /
    • v.6 no.5
    • /
    • pp.485-507
    • /
    • 2018
  • Concrete-Filled Steel Tube (CFST) columns are an increasingly popular means to support great compressive loads in buildings. The residual strength capacity of CFST stub columns may be utilized to assess the potential damage caused by fire and calculate the structural fire protection for least post-fire repair. Ten specimens under room conditions and 10 specimens under fire exposure to the Eurocode smouldering slow-growth fire were tested to examine the effects of diameter to thickness D/t ratio and reinforcing bars on residual strength capacity, ductility and stiffness of CFST stub columns. On the other hand, in sixteen among the twenty specimens, three or six reinforcing bars were welded inside the steel tube. The longitudinal strains in the steel tube and load-displacement relationships were recorded throughout the subsequent compressive tests. Corresponding values of residual strength capacity calculated using AISC 360-10 and EC4 standards are presented for comparison purposes with the experimental results of this study. The test results showed that after exposure to $750^{\circ}C$, the residual strength capacity increased for all specimens, while the ductility and stiffness were slightly decreased. The comparison results showed that the predicted residual strength using EC4 were close to those obtained experimentally in this research.

Effect of the Tube Geometry and Arrangement on the Performance of a High Temperarture Generator (고온재생기 성능 변화에 미치는 전열관 형상 및 배열의 영향)

  • Lee, In-Song;Cho, Keum-Nam
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.546-551
    • /
    • 2007
  • The present study numerically investigated the tube geometry and arrangement on the performance of a high temperature generator (HTG) of the double effect LiBr-water absorption system. FLUENT, as a commercial code, was used to estimate the thermal performance of the HTG. Key parameters were the spacing raito of circular and flattened tubes, the pitch ratio of the rib on the flattened tube, and total heat transfer area of the HTG. Temperature and velocity profiles around the tubes of the HTG were calculated to estimate the thermal performance of the HTG. When the spacing ratio of circular and flattened tube is 1.11 and 0.73, the exhaust gas temperature is $185^{\circ}C$ without rib. The exhaust gas temperature when applied the rib in flattened tubes was lower by $24^{\circ}C$ than that without the rib. Rib can reduce the HTG volume by 7%.

  • PDF