• Title/Summary/Keyword: Circular tooth

Search Result 45, Processing Time 0.024 seconds

Design and Meshing Analysis of a Non-involute Internal Gear for Counters (계수기용 비인벌류트 치형의 내치차 설계와 물림해석)

  • Lee, Sung-Chul
    • Tribology and Lubricants
    • /
    • v.30 no.4
    • /
    • pp.212-217
    • /
    • 2014
  • A counter gear transmits the rotation angle, so the angular velocity ratio of the gear does not necessarily need to be constant in the meshing process. As a pinion has a small number of teeth when combined with an internal gear for counters, tooth interference can occur with the use of an involute curve. This paper introduces circular arcs that represent a tooth profile and fillet for the profile design of a pinion through the combination of arcs with lines. The straight line of a rack tooth represents the profile of a mating internal gear. Thus, the circular arc and line maintain contact during the rotation of the counter gear. This paper presents an analysis of the meshing of the circular arc tooth and rack tooth along with the properties of the counter gear, such as the change in rotational velocity and amount of backlash. The contact ratio of the counter gear is 1 because the tooth contact occurs between circular arcs and line. The initial position of tooth contact, which denotes the simultaneous contact of two teeth, is found. As the rotation of the pinion, only one tooth keeps the contact situation. This meshing property is analyzed by the geometrical constraints of the tooth profile in contact and the results are presented as graphical diagrams in which tooth-arc movements are superimposed.

A Stress Analysis on the Involute-Circular Arc Composite Tooth Profile Gear (인벌류우트-圓弧 合成齒形기어의 應力解析)

  • 탁계래;최상훈;윤갑영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.198-204
    • /
    • 1987
  • In a new involute-circular arc tooth profile which is composed of an involute curve in the vicinity of pitch point, a circular arc in the addendum part, and a curve in the dedendum part which is generated by the circular arc profile of mating gear tooth profile, the tooth contact stress is calculated analytically and the root fillet stress is calculated by the finite element analysis. The root fillet stress and the Hertzian contact stress of composite tooth profile gear are decreased with increasing the pressure angle and with decreasing the radius of circular arc and unwound angle. Compared with the standard involute gear, the root fillet stress is decreased by 2-15% and the Hertizian contact stress is decreased by 6-24%.

Mechanical characteristics of involute-circular arc composite tooth profile (인벌류우트-圓弧 合成齒形의 諸特性)

  • 변준형;최상훈;윤갑영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.870-875
    • /
    • 1986
  • In this study, full-rounded tip curve of rack and its mating fillet curve of pinion in Involute-circular arc composite tooth profile are derived. Mechanical characteristics are calculated analytically, i.e., Specific sliding, Nominal bending stress at working root circle and the Contact factor of the arc of contact in circular arc part to the arc of double contact. These characteristics compared with standard involute tooth profile are improved in circular arc part of composite tooth profile. To obtain more efficient composite tooth profile, we studied these characteristics with regard to the changes of unwound angle and radius of circualr arc. And a design method of composite tooth profile is suggested. Composite tooth profile are compared with standard involute tooth profile.

A Study on Composite Tooth Profile Generation of Involute and Circular Are (인벌류우트 - 圓孤 合成齒形의 創成 에 대한 硏究)

  • 최상동;변준형;윤갑영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.572-578
    • /
    • 1985
  • A composite gear with involute-circular are tooth profile and a tooth profile of the rack to cut this gear are theoretictically obtained. The composite gear has involute tooth profile in the vicinity of pitch point and has circular arc tooth profiles at addendum adn dedendum. The contact ratio(M$_{c}$), chordal tooth thickness (chordal tip tooth thickness S$_{t}$, chordal root tooth thickness S$_{t}$) of the composite gear are compared with those of involute gear. When module, number of teeth and pressure angle eqaul, S$_{t}$ of composite gear is much larger than that of involute gear. Under the same conditions, S/sib t/ and M$_{c}$ of composite gear become smaller than those of involute gear.lute gear.

A Study on the Adequate Radius of Circular Arc in the Involute-Circular Arc Composite Tooth Profile (인벌류우트-원호 합성치형의 적정 원호반경에 대한 연구)

  • 정인승;손지원;윤갑영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.296-303
    • /
    • 1987
  • The composite gear which is composed of involute curve and circular arc has been studied. In the vicinity of pitch point, its profile is an involute curve, and in the dedenum, a circular arc. The curve in the dedendum is generated by the circular arc of the mating gear. Though the available range between minimum and maximum radius of circular arc can be given by existing tooth profile equation, there was no formulation which relates design parameters to the desired radius. It is attempted to get the formula for the radius of circular arc as a function of design parameters, such as unwounded angle, number of teeth, module, and pressure angle. The radius of circular arc, the chordal tooth thickness at working root circle, nominal bending stress, Hertz stress and contact ratio obtained from derived formula are compared with those of the existing design criteria. And these are compared with those of involute gear.

Finite element generalized tooth contact analysis of double circular arc helical gears

  • Qu, Wentao;Peng, Xiongqi;Zhao, Ning;Guo, Hui
    • Structural Engineering and Mechanics
    • /
    • v.43 no.4
    • /
    • pp.439-448
    • /
    • 2012
  • This paper investigates the load sharing of double circular arc helical gears considering the influence of assembly errors. Based on a load sharing formulae, a three-dimensional finite element tooth contact analysis (TCA) is implemented with commercial software package ANSYS. The finite element grid for the double circular arc gear contact model is automatically generated by using the APDL (ANSYS Parameter Design Language) embedded in ANSYS. The realistic rotation of gears is achieved by using a coupling degree-of-freedom method. Numerical simulations are carried out to exemplify the proposed approach. The distribution of contact stress and bending stress under specific loading conditions are computed and compared with those obtained from Hertz contact theory and empirical formulae to demonstrate the efficiency of the proposed load sharing calculation formulae and TCA approach.

Tooth Profile Design of an Oval Gear According to the Curvature of the Pitch Curve (오벌기어의 피치곡선 곡률에 따른 치형 설계)

  • Lee, Sung-Chul
    • Tribology and Lubricants
    • /
    • v.28 no.1
    • /
    • pp.27-32
    • /
    • 2012
  • Oval gears are typical kinds of non-circular gears and are widely used in flow meters. This paper presents a tooth profile design of an oval gear according to the curvature of the pitch curve. The length of the pitch oval is divided by the number of teeth and the curvature of the divided points is obtained. The tooth profile is designed on the circle of the curvature as if it is the pitch circle of a gear. The teeth of the oval gear have the same module and pressure angle, but the pitch circle of each tooth differs in size. Thus, the teeth on the divided points of the pitch oval are different in shape. This type of oval gear will improve the meshing properties.

A Study on the Proper Scope for Pressure Angle, Ratio of Tooth Number & Radius of Curvature in Non-Circular Gears (비원형기어에서의 압력각과 잇수비 및 곡률반경의 적정범위에 관한 연구)

  • Park, S.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.6
    • /
    • pp.52-63
    • /
    • 1997
  • Non-circular gear has a good velocity ratio in high speed and heavy load without any slip, moreover, it can transmit various motion, using simpler structure than link and cam, automation mechainism. In case of designing and manufacturing non-circular gear. I suggest one of references in applying non-circular gear to industrial plant, and suitable range of application by pressure angle curvature and angle ratio

  • PDF

A NOVEL 3D SCAN METHOD TO QUANTIFY TEETH WEAR (3-Dimensional scan을 이용한 치아 마모량 측정 방법에 관한 연구)

  • Kim Seung-June;Choi Dae-Gyun;Kwon Kung-Rock;Lee Seok-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • Statement of problem : Tooth wear is physiological phenomenon. Ninety-seven percent of normal people have tooth wear and about 7% has pathologic teeth wear. If we know the amount of tooth surface loss caused by pathologic tooth wear, we may restore it ideally Purpose : Recently measurement of tooth wear by using 3D scan has been increasing. Therefore, we need to know how accurate 3D scan is. Past accuracy test on 3D scan was about linear change, but as we know that tooth wear is volume change. Thus, the purpose of this study is to know how accurate 3D scan is. Material and Methods : For accuracy test of 3D scanner volume values measured by 3D scanner and micro-balance were compared. For test I, preliminary, 3 ball samples and 3 circular cones were made with pattern resin. For test II, 10 teeth shape rubber samples were used. Results and Conclusion : 1. The result of the accuracy test on 3D scan with 3 ball samples and 3 circular cones made of pattern resin has no significant difference(p<0.05). 2. The result of the accuracy test on 3D scan with 10 samples of tooth shape rubber has no significant difference (p<0.05). As a result, we may concluded the analysis of quantifying tooth wear used by 3D scan is useful in the clinic.

A Study on Gerotor Design with Optimum Tip Clearance for Low Speed High Torque Gerotor Hydraulic Motor (저속 고토오크 제로터 유압모터의 최적 이 끝 틈새를 갖는 제로터 설계 연구)

  • Seo, J.S.;Chung, H.S.;Jeong, H.M.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.119-126
    • /
    • 2006
  • Gerotor hydraulic motor is widely used in hydraulic systems due to its low speed, high torque output and compactness in rotational direct driving of a heavy weight. Gerotor is a Planar mechanism consisted of a pair of rotor and circular teeth of stator assembly which forms a closed space, so called a chamber. The motion of rotor relative to the circular tooth is produced by the pressure difference of hydraulic operating fluid between the adjacent chamber. As all active contact points of rotor and circular teeth are subjected to very high sliding friction, a reduction in the performance of the gerotor hydraulic motor can not be avoided. Therefore, the core design parameters of gerotor profile used in hydraulic motors is to minimize a friction force by high contact stresses. The analytical design method of gerotor profile, based on envelope of a family of curves, is proposed. In this study, the influence of the tip clearances on three critical contact points between rotor and circular teeth of stator assembly has been explored by experimental data in this paper. At the same time a improvement method to reduce the friction force is proposed and the tip clearances on three critical points for getting an optimum gerotor profile are also analyzed.

  • PDF