• Title/Summary/Keyword: Circular Search Distance

Search Result 10, Processing Time 0.03 seconds

The Performance Analysis of Nearest Neighbor Query Process using Circular Search Distance (순환검색거리를 이용하는 최대근접 질의처리의 성능분석)

  • Seon, Hwi-Joon;Kim, Won-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.1
    • /
    • pp.83-90
    • /
    • 2010
  • The number of searched nodes and the computation time in an index should be minimized for optimizing the processing cost of the nearest neighbor query. The Measurement of search distance considered a circular location property of objects is required to accurately select the nodes which will be searched in the nearest neighbor query. In this paper, we propose the processing method of the nearest neighbor query be considered a circular location property of object where the search space consists of a circular domain and show its performance by experiments. The proposed method uses the circular minimum distance and the circular optimal distance which are the search measurements for optimizing the processing cost of the nearest neighbor query.

The Processing Method of Nearest Neighbor Queries Considering a Circular Location Property of Object (객체의 순환적 위치속성을 고려한 최대근접질의의 처리방법)

  • Seon, Hwi-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.4
    • /
    • pp.85-88
    • /
    • 2009
  • In multimedia database systems, the nearest neighbor Query occurs frequently and requires the processing cost higher than other spatial Queries do. It needs the measurement of search distance that the number of searched nodes and the computation time in an index can be minimized for optimizing the cost of processing the nearest neighbor query. The circular location property of objects is considered to accurately select the nodes which will be searched in the nearest neighbor query. In this paper, we propose the processing method of nearest neighbor queries be considered a circular location property of object where the search space consists of a circular domain and show its characteristics. The proposed method uses the circular minimum distance and the circular optimal distance, the search measurement for optimizing the processing cost of nearest neighbor queries.

  • PDF

A Clustering Method for Optimizing Spatial Locality (공간국부성을 최적화하는 클러스터링 방법)

  • 김홍기
    • Journal of KIISE:Databases
    • /
    • v.31 no.2
    • /
    • pp.83-90
    • /
    • 2004
  • In this paper, we study the CCD(Clustering with Circular Distance) and the COD(Clustering with Obstructed Distance) problems to be considered when objects are being clustered in a circularly search space and a search space with the presence of obstacles. We also propose a now clustering algorithm for clustering efficiently objects that the insertion or the deletion is occurring frequently in multi-dimensional search space. The distance function for solving the CCD and COD Problems is defined in the Proposed clustering algorithm. This algorithm is included a clustering method to create clusters that have a high spatial locality by minimum computation time.

Algorithm for Finding K-Nearest Object Pairs in Circular Search Spaces (순환검색공간에서 K-최근접객체 쌍을 찾는 알고리즘에 관한 연구)

  • Seon, Hwi-Joon;Kim, Hong-Ki
    • Spatial Information Research
    • /
    • v.20 no.2
    • /
    • pp.165-172
    • /
    • 2012
  • The query of the K closest object pairs between two object sets frequently occurs at recently retrieval systems. The circular location property of objects should be considered for efficiently process queries finding such a K nearest object pair. In this paper, we propose the optimal algorithm finding the K object pairs which are closest to each other in a search space with a circular domain and show its performance by experiments. The proposed algorithm optimizes the cost of finding the K nearest object pairs by using the circular search distances which is much applied the circular location property.

Comparison and Analysis of Information Exchange Distributed Algorithm Performance Based on a Circular-Based Ship Collision Avoidance Model (원형 기반 선박 충돌 피항 모델에 기반한 정보 교환 분산알고리즘 성능 비교 분석)

  • Donggyun Kim
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.401-409
    • /
    • 2023
  • This study compared and analyzed the performance of a distributed area search algorithm and a distributed probability search algorithm based on information exchange between ships. The distributed algorithm is a method that can search for an optimal avoidance route based on information exchange between ships. In the distributed area search algorithm, only a ship with the maximum cost reduction among neighboring ships has priority, so the next expected location can be changed. The distributed stochastic search algorithm allows a non-optimal value to be searched with a certain probability so that a new value can be searched. A circular-based ship collision avoidance model was used for the ship-to-ship collision avoidance experiment. The experimental method simulated the distributed area search algorithm and the distributed stochastic search algorithm while increasing the number of ships from 2 to 50 that were the same distance from the center of the circle. The calculation time required for each algorithm, sailing distance, and number of message exchanges were compared and analyzed. As a result of the experiment, the DSSA(Distributed Stochastic Search Algorithm) recorded a 25%calculation time, 88% navigation distance, and 84% of number of message exchange rate compared to DLSA.

Mutual Information-based Circular Template Matching for Image Registration (영상등록을 위한 Mutual Information 기반의 원형 템플릿 정합)

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.547-557
    • /
    • 2014
  • This paper presents a method for designing circular template used in similarity measurement for image registration. Circular template has translation and rotation invariant property, which results in correct matching of control points for image registration under the condition of translation and rotation between reference and sensed images. Circular template consisting of the pixels located on the multiple circumferences of the circles whose radii vary from zero to a certain distance, is converted to two-dimensional Discrete Polar Coordinate Matrix (DPCM), whose elements are the pixels of the circular template. For sensed image, the same type of circular template and DPCM are created by rotating the circular template repeatedly by a certain degree in the range between 0 and 360 degrees and then similarity is calculated using mutual information of the two DPCMs. The best match is determined when the mutual information for each rotation angle at each pixel in search area is maximum. The proposed algorithm was tested using KOMPSAT-2 images acquired at two different times and the results indicate high accurate matching performance under image rotation.

Path Space Approach for Planning 2D Shortest Path Based on Elliptic Workspace Geometry Mapping

  • Namgung, Ihn
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.92-105
    • /
    • 2004
  • A new algorithm for planning a collision-free path based on algebraic curve is developed and the concept of collision-free Path Space (PS) is introduced. This paper presents a Geometry Mapping (GM) based on two straight curves in which the intermediate connection point is organized in elliptic locus ($\delta$, $\theta$). The GM produces two-dimensional PS that is used to create the shortest collision-free path. The elliptic locus of intermediate connection point has a special property in that the total distance between the focus points through a point on ellipse is the same regardless of the location of the intermediate connection point on the ellipse. Since the radial distance, a, represents the total length of the path, the collision-free path can be found as the GM proceeds from $\delta$=0 (the direct path) to $\delta$=$\delta$$\_$max/(the longest path) resulting in the minimum time search. The GM of elliptic workspace (EWS) requires calculation of interference in circumferential direction only. The procedure for GM includes categorization of obstacles to .educe necessary calculation. A GM based on rectangular workspace (RWS) using Cartesian coordinate is also considered to show yet another possible GM. The transformations of PS among Circular Workspace Geometry Mapping (CWS GM) , Elliptic Workspace Geometry Mapping (EWS GM) , and Rectangular Workspace Geometry Mapping (RWS GM), are also considered. The simulations for the EWS GM on various computer systems are carried out to measure performance of algorithm and the results are presented.

A study on digital locking device design using detection distance 13.4mm of human body sensing type magnetic field coil (인체 감지형 자기장 코일의 감지거리 13.4mm를 이용한 디지털 잠금장치 설계에 관한 연구)

  • Lee, In-Sang;Song, Je-Ho;Bang, Jun-Ho;Lee, You-Yub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.9-14
    • /
    • 2016
  • This study evaluated a digital locking device design using detection distance of 13.4mm of a human body sensing type magnetic field coil. In contrast to digital locking devices that are used nowadays, the existing serial number entering buttons, lighting, number cover, corresponding pcb, exterior case, and data delivery cables have been deleted and are only composed of control ON/OFF power switches and emergency terminals. When the magnetic field coil substrates installed inside the inner case detects the electric resistance delivered from the opposite side of the 12mm interval exterior contacting the glass body part, the corresponding induced current flows. At this time, the magnetic field coil takes the role as a sensor when coil frequency of the circular coil is transformed. The magnetic coil as a sensor detects a change in the oscillation frequency output before and after the body is detected. This is then amplified to larger than 2,000%, transformed into digital signals, and delivered to exclusive software to compare and search for embedded data. The detection time followed by the touch area of the body standard to a $12.8{\emptyset}$ magnetic field coil was 30% contrast at 0.08sec and 80% contrast at 0.03sec, in which the detection distance was 13.4mm, showing the best level.

Drone Location Tracking with Circular Microphone Array by HMM (HMM에 의한 원형 마이크로폰 어레이 적용 드론 위치 추적)

  • Jeong, HyoungChan;Lim, WonHo;Guo, Junfeng;Ahmad, Isitiaq;Chang, KyungHi
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.393-407
    • /
    • 2020
  • In order to reduce the threat by illegal unmanned aerial vehicles, a tracking system based on sound was implemented. There are three main points to the drone acoustic tracking method. First, it scans the space through variable beam formation to find a sound source and records the sound using a microphone array. Second, it classifies it into a hidden Markov model (HMM) to find out whether the sound source exists or not, and finally, the sound source is In the case of a drone, a sound source recorded and stored as a tracking reference signal based on an adaptive beam pattern is used. The simulation was performed in both the ideal condition without background noise and interference sound and the non-ideal condition with background noise and interference sound, and evaluated the tracking performance of illegal drones. The drone tracking system designed the criteria for determining the presence or absence of a drone according to the improvement of the search distance performance according to the microphone array performance and the degree of sound pattern matching, and reflected in the design of the speech reading circuit.

미세금형 가공을 위한 전기화학식각공정의 유한요소 해석 및 실험 결과 비교

  • Ryu, Heon-Yeol;Im, Hyeon-Seung;Jo, Si-Hyeong;Hwang, Byeong-Jun;Lee, Seong-Ho;Park, Jin-Gu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.81.2-81.2
    • /
    • 2012
  • To fabricate a metal mold for injection molding, hot-embossing and imprinting process, mechanical machining, electro discharge machining (EDM), electrochemical machining (ECM), laser process and wet etching ($FeCl_3$ process) have been widely used. However it is hard to get precise structure with these processes. Electrochemical etching has been also employed to fabricate a micro structure in metal mold. A through mask electrochemical micro machining (TMEMM) is one of the electrochemical etching processes which can obtain finely precise structure. In this process, many parameters such as current density, process time, temperature of electrolyte and distance between electrodes should be controlled. Therefore, it is difficult to predict the result because it has low reliability and reproducibility. To improve it, we investigated this process numerically and experimentally. To search the relation between processing parameters and the results, we used finite element simulation and the commercial finite element method (FEM) software ANSYS was used to analyze the electric field. In this study, it was supposed that the anodic dissolution process is predicted depending on the current density which is one of major parameters with finite element method. In experiment, we used stainless steel (SS304) substrate with various sized square and circular array patterns as an anode and copper (Cu) plate as a cathode. A mixture of $H_2SO_4$, $H_3PO_4$ and DIW was used as an electrolyte. After electrochemical etching process, we compared the results of experiment and simulation. As a result, we got the current distribution in the electrolyte and line profile of current density of the patterns from simulation. And etching profile and surface morphologies were characterized by 3D-profiler(${\mu}$-surf, Nanofocus, Germany) and FE-SEM(S-4800, Hitachi, Japan) measurement. From comparison of these data, it was confirmed that current distribution and line profile of the patterns from simulation are similar to surface morphology and etching profile of the sample from the process, respectively. Then we concluded that current density is more concentrated at the edge of pattern and the depth of etched area is proportional to current density.

  • PDF