• 제목/요약/키워드: Circular Pipe

검색결과 237건 처리시간 0.028초

원주방향 노치형 감육부를 가진 배관의 손상거동 평가 (Evaluation of Failure Behavior of a Pipe Containing Circumferential Notch-Type Wall Thinning)

  • 김진원;박치용
    • 대한기계학회논문집A
    • /
    • 제27권8호
    • /
    • pp.1295-1302
    • /
    • 2003
  • In order to evaluate a failure behavior of pipe with notch-type wall thinning, the present study performed full-scale pipe tests using the 102mm, Schedule 80 pipe specimen simulated notch- and circular-type thinning defects. The pipe tests were conducted under the conditions of both monotonic and cyclic bending moment at a constant internal pressure of 10 MPa. From the results. of experiment the failure mode, load carrying capacity, deformation ability, and fatigue life of a notch-type wall thinned pipe were investigated, and they were compared with those of a circular-type wall thinned pipe. The failure mode of notched pipe was similar to that of circular-type thinned pipe under the monotonic bending load. Under the cyclic bending load, however, the mode was clearly distinguished with variation in the shape of wall thinning. The load carrying capacity of a pipe containing notch-type wall thinning was about the same or slightly lower than that of a pipe containing circular-type wall thinning when the thinning area was subjected to tensile stress, whereas it was higher than that of a pipe containing circular-type thinning defect when the thinning area was subjected to compressive stress. On the other hand, the deformation ability and fatigue life of a notch-type wall thinned pipe was lower than those of a circular-type wall thinned pipe.

원형관에서 상대수심을 고려한 점변류 해석 (Analysis of Gradually Varied Flow Considering Relative Depth in Circular Pipe)

  • 김민환;박정희;송창수
    • 상하수도학회지
    • /
    • 제21권3호
    • /
    • pp.287-294
    • /
    • 2007
  • When we use the circular pipes for wastewater and storm water, we should be known the characteristics of the flow for accurate design. To elevate the design accuracy, we want to know the profile of flow. The roughness coefficient in the Manning equation is constant, but in actuality changed with the relative depth in circular pipe. This study was conducted to calculate the relative normal depth in changing the roughness coefficient (named relative roughness coefficient) with the relative depth in the analysis of gradually varied flow in the circular pipe by Newton-Raphson method. We performed the analysis of gradually varied flow using the relative normal depth and the relative roughness coefficient. We presented the 12 flow profiles with the relative depth and the relative roughness coefficient in circular pipe. The flow classification considering relative depth in circular pipe is available to analyse gradually varied flow profiles.

유체를 이송하는 양단 고정된 반원관의 면내/면외 진동 특성 (Vibration Characteristics of a Semi-circular Pipe Conveying Fluid with Both Ends Clamped)

  • 정두한;정진태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.252-257
    • /
    • 2004
  • Free vibration of a semi-circular pipe conveying fluid is analyzed when the pipe is clamped at both ends. To consider the geometric non-linearity, this study adopts the Lagrange strain theory and the extensibility of the pipe. By using the extended Hamilton principle, the non-linear partial differential equations are derived, which are coupled to the in-plane and out-of\ulcornerplant: motions. To investigate the vibration characteristics of the system, the discretized equations of motion are derived from the Galerkin method. The natural frequencies are computed from the linearized equations of motion in the neighborhood of the equilibrium position. From the results. the natural frequencies for the in-plane and out-of-plane motions are vary with the flow velocity. However, no instability occurs the semi-circular pipe with both ends clamped, when taking into account the geometric non-linearity explained by the Lagrange strain theory.

  • PDF

AI 원형 관의 2축 압축 변형특성에 미치는 압축속도의 영향 (The effect of compressive strain rate on biaxial compressive deformation characteristics of Al circular pipe)

  • 원시태;정현진;안희준;조황현;유종근
    • 한국금형공학회:학술대회논문집
    • /
    • 한국금형공학회 2008년도 하계 학술대회
    • /
    • pp.23-26
    • /
    • 2008
  • In order to examine the deformation characteristics of Al circular pipe underthe biaxial compression, the horizontal biaxial compression die for the experiment was manufactured. From this, in the various compressive strain rate (1 mm/min. ${\sim}$ 400 mm/min.)conditions, the circular pipes, which were made by Al materials, were investigated based on the properties change of cross section area, punch load and deformation behavior. The tensile and compressive strains were evaluated from micro Vickers hardness tester. From these results, the punch load and deformation characteristic of Al circular pipes were highly changed in the compressive strain rate about 200 mm/min. The Al circular pipes had the tendency that the punch load decreased with increasing the compressive strain rate. In addition, following as the change of the shape and position of neutral axis due to the deformation proceeding of the circular pipe, the special point of the internal circular pipe at maximum load showed the maximum deformation strain and the maximum measured hardness value. The CAE (computer aided engineering) simulation using Deform-2D program was performed on the circular pipe in order to know and verify the exact compressive deformation behavior. From these results, the experimentally measured results were reasonably in good agreement with the simulation results.

  • PDF

해상교량기초용 대형원형강관 가물막이의 동적 안정성 모니터링을 위한 실내모형실험 (Small-Scaled Laboratory Experiments for Dynamic Stability Monitoring of Large Circular Steel Pipe Cofferdam of Marine Bridge Foundation)

  • 박민철;이종섭;김동호;유정동
    • 한국지반공학회논문집
    • /
    • 제35권12호
    • /
    • pp.123-134
    • /
    • 2019
  • 본 연구의 목적은 충격에 의한 모형 원형강관의 동적 반응을 조사하는 것이며, 선박충돌에 의한 대형원형강관의 동적 안정성 모니터링을 위한 기초연구로써 수행되었다. 실내실험은 직경, 두께, 높이가 각각 30cm, 0.4cm, 90cm인 스테인레스 재질의 단본 모형 원형강관과 3개의 세그먼트를 볼트로 조립한 모형 원형강관으로 수행되었다. 각 세그먼트의 높이는 30cm이다. 대형원형강관이 해상에 설치된 것을 모사하기 위하여 모형 원형강관을 가로, 세로, 높이가 각각 1m인 토조에 설치하였으며, 흙의 높이는 23cm로 하였다. 선박 충돌을 모사하기 위하여 모형 원형강관을 해머로 타격하였으며, 토조 내의 수위를 25cm, 40cm, 55cm, 70cm로 변화시키면서 모형 원형강관의 동적 반응 특성을 비교하였다. 실험결과, 수위가 증가할수록 측정된 신호의 에너지가 감소하였으며, 단본의 모형 원형강관보다 볼트로 조립된 모형 원형강관이 더 큰 감소폭을 보였다. 주파수 특성의 경우, 단본 모형 원형강관에서 측정된 주파수 신호는 수위가 증가할수록 우세 주파수가 감소하는 경향을 보였다. 볼트로 조립된 모형 원형강관의 경우도 수위가 증가할수록 우세 주파수가 감소하였다. 하지만, 수위에 따른 우세 주파수의 감소폭이 상대적으로 작았으며, 수위가 상부 세그먼트에 접할 때 높을 때 급격한 감소를 보였다. 본 연구의 결과는 가속도계로 측정된 신호의 에너지와 주파수 변화 특성이 해상교량기초용 가물막이 대형원형강관의 동적 안정성 모니터링에 유용하게 활용될 수 있음을 보여준다.

기하학적 비선형성을 고려한 유체를 수송하는 반원관의 면내운동에 대한 진동 해석 (Vibration Analysis for the In-plane Motions of a Semi-Circular Pipe Conveying Fluid Considering the Geometric Nonlinearity)

  • 정진태;정두한
    • 대한기계학회논문집A
    • /
    • 제28권12호
    • /
    • pp.2012-2018
    • /
    • 2004
  • The vibration of a semi-circular pipe conveying fluid is studied when the pipe is clamped at both ends. To consider the geometric nonlinearity, this study adopts the Lagrange strain theory for large deformation and the extensible dynamics based on the Euler-Bernoulli beam theory for slenderness assumption. By using the Hamilton principle, the non-linear partial differential equations are derived for the in-plane motions of the pipe, considering the fluid inertia forces as a kind of non-conservative forces. The linear and non-linear terms in the governing equations are compared with those in the previous study, and some significant differences are discussed. To investigate the dynamic characteristics of the system, the discretized equations of motion are derived from the Galerkin method. The natural frequencies varying with the flow velocity are computed from the two cases, which one is the linear problem and the other is the linearized problem in the neighborhood of the equilibrium position. Finally, the time responses at various flow velocities are directly computed by using the generalized-$\alpha$ method. From these results, we should consider the geometric nonlinearity to analyze dynamics of a semi-circular pipe conveying fluid more precisely.

유체를 수송하는 반원형 곡선관의 면내운동에 대한 비선형 진동 해석 (Non-linear Vibration Analysis for the In-plane Motion of a Semi-circular Pipe Conveying Fluid)

  • 정두한;정진태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.677-682
    • /
    • 2003
  • The non-linear dynamic characteristics of a semi-circular pipe conveying fluid are investigated when the pipe is clamped at both ends. To consider the geometric non-linearity for the radial and circumferential displacements, this study adopts the Lagrange strain theory for large deformation and the extensible dynamics based on the Euler-Bernoulli beam theory for slenderness assumption. By using the Hamilton principle, the non-linear partial differential equations are derived for the in-plane motions of the pipe, considering the fluid inertia forces as a kind of non-conservative forces. The linear and non-linear terms in the governing equations are compared with those in the previous study, and some significant differences are discussed. To investigate the dynamic characteristics of the system, the discretized equations of motion are derived form the Galerkin method. The natural frequencies varying with the flow velocity are computed fen the two cases, which one is the linear problem and the other is the linearized problem in the neighborhood of the equilibrium position. Finally, the time responses at various flow velocities are directly computed by using the generalized- method. From these results, we should to describe the non-linear behavior to analyze dynamics of a semi-circular pipe conveying fluid more precisely.

  • PDF

쓰레기 관로이송 시스템에서의 관로 압력손실 평가 (Evaluation of Pressure Drop in a Circular Pipe of Refuse Collecting System)

  • 김동우;장춘만
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2615-2620
    • /
    • 2007
  • This paper describes on pressure drop in a circular pipe of refuse collecting system. The flow characteristics inside the circular pipe are analyzed by three-dimensional Navier-Stokes analysis. In numerical analysis, an organic waste is modeled using the data obtained by site survey. Pressure drop obtained by numerical simulation is compared to the value obtained by experimental measurements for the two kinds of pipe; straight and bended type. The pressure drop obtained by numerical simulation has a good agreement with that of experiments. It is noted that the accurate prediction of pressure drop in the waste pipe is very important to determine the performance of turbo blower used in making a suction pressure in the waste pipe. Especially, the pressure drop for an organic waste is analyzed according to the mass flow rate of waste.

  • PDF

관로에서 점성유체 유동의 압력파 전달에 관한 연구 (A Study on the Pressure Wave Propagation of Viscous Fluid Flow in a Pipe Line)

  • 김형오;나기대;모양우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.835-840
    • /
    • 2000
  • The objective of the present study is to investigate the characteristics of pressure wave propagation of viscous fluid flow in a circular pipe line. The goal of this study is to select the best frequency of each control factor of a circular pipe. We intend to approach a formalized mathematical model by a very exact and reasonable polynomial for fluid transmission lines. and we computed this mathematical model by computer. The results show that the oil viscosity decreased as the length of the circular pipe increases. and The energy of pressure wave propagation decreased as the pipe diameter decreases. The factor is that density of oil was changed resonant frequency. It has been found the viscosity characteristics is changed largely by length of hydraulic pipe and volume of cavity tank.

  • PDF

동심원관내에서 초음파가 가진된 유동특성의 PIV계측에 의한 연구 (A Study on Flow Characteristics with Ultrasonic Forcing in a Coaxial Circular Pipe by PIV Measurement)

  • 구자훈;박영호;최우창;송민근;주은선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.639-644
    • /
    • 2000
  • An experiment on the enhancement of turbulent flow with ultrasonic forcing was carried out by using PIV measurement in a coaxial circular pipe which could offer characteristics of the turbulence flow plentifully through its jet. A large transparent acryl tank and a coaxial circular pipe nozzle were made for the above research. city water of $25^{\circ}C$ was selected as an experimental liquid and the front flow field of the coaxial circular pipe was divided vertically as 3 measuring regions to observe characteristics of flow phenomena. characteristics of fluid flow such as velocity vector distribution, kinetic energy, turbulent intensity and etc. were visualized, observed, examined and considered at 5 kinds of Re No. such as $Re=1{\times}10^3,\;2{\times}10^3,\;3{\times}10^3,\;5{\times}10^3,\;1{\times}10^4$. In result it was proved that ultrasonic vibration affected the enhancement of turbulent flow.

  • PDF