• Title/Summary/Keyword: Circular Pipe

Search Result 237, Processing Time 0.033 seconds

Flow Characteristics in the Downstream Region of a Butterfly Valve with Various Disk Opening Angle (디스크 회전각에 따른 버터플라이 밸브 하류에서의 유동특성)

  • Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.4 s.27
    • /
    • pp.267-272
    • /
    • 2006
  • Butterfly valves have been used for shut-off and throttling-control application in many industrial fields. Recently, they are frequently used for cooling water, oil system and ballast piping system of many larger vessels. They are especially suited for flow throttling control of heat exchangers in engine room. Measurement by the PIV(Particle Image Velocimetry) was conducted to investigate the flow characteristics of butterfly valve inserted within circular pipe. Flow behaviors such as instantaneous and time-mean velocity vectors are investigated. Furthermore, to reveal systematic performance of the butterfly valve, wall pressure was measured at 6 points along the pipe by digital manometer. As the valve position moves to the closed side, flow separation increases and persists its tendency downstream until smoothly uniform flow developed. The pressure loss is found to be about zero for the disk open angles less than 45 degrees, but is substantially increased for those larger than 60 degrees.

  • PDF

Geometrical Design and SLIPS Lubrication for Enhancement of Negative-pressure-driven Internal Flow Rate in Metal Pipes (금속관 내부의 음압유량 향상을 위한 기하학적 디자인 및 SLIPS 윤활)

  • Kim, Dong Geun;Jang, Changhwan;Kim, Seong Jae;Kim, Daegyoum;Kim, Sanha
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.253-260
    • /
    • 2021
  • Metal pipes are used in a wide range of applications, from plumbing systems of large construction sites to small devices such as medical tools. When a liquid is enforced to flow through a metal pipe, a higher flow rate is beneficial for higher efficiency. Using high pressures can enhance the flow rate yet can be harmful for medical applications. Thus, we consider an optimal geometrical design to increase the flow rate in medical devices. In this study, we focus on cannulas, which are widely used small metal pipes for surgical procedures, such as liposuction. We characterize the internal flow rate driven by a negative pressure and explore its dependence on the key design parameters. We quantitatively analyze the suction characteristics for each design variable by conducting computational fluid dynamics simulations. In addition, we build a suction performance measurement system which enables the translational motion of cannulas with pre-programmed velocity for experimental validation. The inner diameter, section geometry, and hole configuration are the design factors to be evaluated. The effect of the inner diameter dominates over that of section geometry and hole configuration. In addition, the circular tube shape provides the maximum flow rate among the elliptical geometries. Once the flow rate exceeds a critical value, the rate becomes independent of the number and width of the suction holes. Finally, we introduce a slippery liquid-infused nanoporous surface (SLIPS) coating using nanoparticles and hydrophobic lubricants that effectively improves the flow rate and antifouling property of cannulas without altering the geometrical design parameter.

Limit Loads for Circular Wall-Thinned Feeder Pipes Considering Bend Angle (굽힘각도를 고려한 원형 감육이 발생한 중수로 피더관의 한계하중)

  • Bae, Kyung-Dong;Je, Jin-Ho;Kim, Jong-Sung;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.313-318
    • /
    • 2012
  • In CANDU, feeder pipes supply heavy water to pressure tube and steam generator. Under service conditions, Flow-Accelerated Corrosion (FAC) produces local wall-thinning in the feeder pipes. The wall-thinning in these pipes affects the integrity of the piping system, as verified in previous research. This paper provides limit loads for wallthinned feeder pipes with $45^{\circ}$ and $60^{\circ}$ bend angles, and proposes an equation that predicts the limit loads for wallthinned feeder pipes with arbitrary bend angles. On the basis of finite element limit analyses, limit loads are obtained for wall-thinned feeder pipes under in-plane bending and internal pressure. There are two cases of in-plane bending: the in-plane closing direction and the in-plane opening direction. The material is considered the effect of the large deformation, so an elastic-perfectly-plastic material is assumed in the calculations.

Analysis of Void Closure in the Upsetting Process of Large-Ingot (대형강괴 업셋팅공정의 기공압착 해석)

  • 박치용;조종래;양동열;김동진;박일수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1877-1889
    • /
    • 1992
  • Upsetting is performed in open-die press forging to deform metal in all directions in order to enhance soundness of a product and reduce directionality of properties caused by casting. It is necessary to ensure sufficient forging ratio for subsequent cogging operations and consolidate the void along the centerline. To obtain these benefits, the upper die shape (dome and dished shape) is considered as an upsetting parameter. Thermo-viscoplastic finite element analysis has been carried out so as to understand the influence of upper die shape on the effective strain, hydrostatic stress and temperature in the upset-forged ingots without internal defects. The analysis is focused on the investigation into internal void closure in ingots with pipe holes and circular voids. The computational results have shown that the volume fraction of the void is independent of the circular void size and the closure of internal voids is much more influenced by the effective strain than the hydrostatic stress around the void. It is finally suggested that the height reduction must be over 35% for consolidation of internal voids.

Limit Loads for Circular Wall-Thinned Feeder Pipes Subjected to Bending and Internal Pressure. (원형 감육이 발생한 중수로 피더관의 한계하중 평가)

  • Je, Jin-Ho;Lee, Kuk-Hee;Chung, Ha-Joo;Kim, Jong-Sung;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1675-1680
    • /
    • 2010
  • Flow Accelerated Corrosion (FAC) occurring during in-service conditions results in localized wall-thinning in the feeder pipes of CANDU. The wall-thinning of the feeder pipes is the main degradation mechanisms affecting the integrity of piping systems. In this paper, we assess the integrity of wall-thinned feeder pipes by limit load analysis. The limit loads for wall-thinning feeder pipes subjected to in-plane bending and internal pressure were determined on the basis of finte element limit analyses. The limit loads are determined from the results of limit analyses of elasticperfectly-plastic materials using the large geometry change. Closed-form approximations of limit load solutions for wall-thinning feeder pipes subjected to in-plane bending and pressure are proposed.

Improvement of Medium and Small Urban Stream Water Quality and Applicability of Design Factor Using Biological and Physicochemical Processing (도심지역 내 중·소하천 수질 개선을 위한 가압부상 및 관로형 미생물 부착 공정 적용에 관한 연구)

  • Kim, Moon-Ki;Choi, Jung-Su;Kim, Sam-Ju;Kim, Hyun-Gu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.7
    • /
    • pp.509-517
    • /
    • 2013
  • The purpose of this study is to assess the applicability of device-type stream coagulation process which combines physiochemical, biological processing for efficient improvement of water quality in small, middle-sized urban streams. The stream purification facility of this study is compose of pressure flotation type Micro Bubble Process(MBP) to remove TSS and TP and conduit line type Attached Microbial Pipe System(AMPS) to remove BOD. Test conditions of each device were set by floating stay time and change of ultra fine bubble injection amount of MBP, and change of AMPS stay time. Also, removal efficiency of pollution sources of each process were assess by change of season. As result of continuous operation of each process, MBP showed a maximum of TSS 83.69%, TP 95.15% process efficiency and AMPS showed a maximum of 52.95% TBOD5 removal efficiency. Also as result of circular operation of each process, MBP showed a maximum of TSS 69.75%, TP 70.17% process efficiency and AMPS showed a maximum of 68.58% TBOD5 removal efficiency. Therefore, it is considered that this stream coagulation process is effective in improving the water quality of streams in urban areas.

Examination of Lateral Torsional Bucling Strength by Increasing the Warping Strength of I-Section Plate Girder with Concrete Filled Half Pipe Stiffener (콘크리트 충전 반원기둥보강재가 적용된 플레이트 거더의 뒤틀림 강도)

  • Cheon, Jinuk;Lee, Senghoo;Baek, Seungcheol;Kim, Sunhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.577-585
    • /
    • 2023
  • Lateral torsional buckling causessafety accidentssuch as collapse accidents during erection. Therefore, anaccurate safety designshould be conducted. Lateral torsional buckling canbe prevented by reinforcing the end orreducing the unbraced length. The method ofreducing the unbraced length by installing a crossframe has high material and installation costs and low maintenance performance.In addition, structuralsafety may be deteriorated due to cracks. The end reinforcement method using Concrete Filled Half Pipe Stiffeneris a method ofreinforcing the end of a plate girder using a stiffenerin the form of a semi-circular column. This method increasesthewarping strength ofthe girder and increasesthe lateral torsional buckling strength.In thisstudy, the effect ofincreasing the warping strengthof plate girders with concrete filled half pipe stiffeners was confirmed. To verify the effect, the results ofthe designequationand the finite element analysis were compared and verified through a experiment. As a result, the plate girderwithCFHPS increased thewarping strengthand confirmed that the lateral torsional buckling strength was increased.

Numerical Analysis and Flow Visualization Study on Two-phase Flow Characteristics in Annular Ejector Loop (환형 이젝터 루프 내부의 이상유동특성 파악을 위한 수치해석 및 유동가시화 연구)

  • Lee, Dong-Yeop;Kim, Yoon-Kee;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.47-53
    • /
    • 2011
  • A water driven ejector loop was designed and constructed for air absorption. The used ejector was horizontally installed in the loop and annular water jet at the throat entrained air through the circular pipe placed at the center of the ejector. Wide range of water flow rate was provided using two kinds of pumps in the loop. The tested range of water flow rate was 100${\ell}$ /min to 1,000 ${\ell}$/min. Two-phase flow inside the ejector loop was simulated by CFD analysis. Homogeneous particle model was used for void fraction prediction. Water and air flow rates and pressure drop through the ejector were automatically recorded by using the LabView based data acquisition system. Flow characteristics and air bubble velocity field downstream of the ejector were investigated by two-phase flow visualization and PIV measurement based on bubble shadow images. Overall performance of the two-phase ejector predicted by the CFD simulation agrees well with that of the experiment.

Multianalyte Sensor Array using Capillary-Based Sample Introduction Fluidic Structure: Toward the Development of an "Electronic Tongue"

  • Sohn, Young-Soo;Anslyn, Eric V.;McDevitt, John T.;Shera, Jason B.;Neikirk, Dean P.
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.378-382
    • /
    • 2004
  • A micromachined fluidic structure for the introduction of liquid samples into a chip-based sensor array composed of individually addressable polymeric microbeads has been developed. The structure consists of a separately attached cover glass, a single silicon chip having micromachined channels and microbead storage cavities, and a glass carver. In our sensor array, transduction occurs via colorimetric and fluorescence changes to receptors and indicator molecules that are covalently attached to termination sites on the polymeric microbeads. Data streams are acquired for each of the individual microbeads using a CCD. One of the key parts of the structure is a passive fluid introduction system driven only by capillary force. The velocity of penetration of a horizontal capillary for the device having a rectangular cross section has been derived, and it is quite similar to the Washburn Equation calculated for a pipe with a circular cross section having uniform radius. The test results show that this system is useful in a ${\mu}$-TAS and biomedical applications.

Evaluation of fatigue poperties of base and weld metal for API 5L X65 pipeline (API 5L X65 배관 모재 및 용접부 피로특성 평가)

  • Kim, Cheol-Man;Baek, Jong-Hyun;Kim, Woo-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.44-48
    • /
    • 2001
  • The pipelines for natural gas transmission were buried in the ground of 1.5m depth. The pipelines were continuously subjected to vehicle load and internal pressure change by the quantity consumed of natural gas. In this paper, high cycle fatigue properties of natural gas transmission pipelines were studied. Fatigue specimens were obtained from the base and weld metal of circular pipe. Fatigue strength increased with increasing yield strength. Especially, the fatigue strength of base metal was higher than the yield strength of base metal and the fatigue strength of weld metal by manufactured process of TMCP.

  • PDF