• Title/Summary/Keyword: Circular Perforation

Search Result 17, Processing Time 0.022 seconds

Vibrations and stress analysis of perforated functionally graded rotating beams

  • Alaa A. Abdelrahman;Hanaa E. Abd-El-Mottaleb;Mohamed G. Elblassy;Eman A. Elshamy
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.667-684
    • /
    • 2023
  • In the context of finite element method, a computational simulation is presented to study and analyze the dynamic behavior of regularly perforated functionally graded rotating beam for the first time. To investigate the effect of perforation configurations, both regular circular and squared perforation patterns are studied. To explore impacts of graded material distributions, both axial and transverse gradation profiles are considered. The material characteristics of graded materials are assumed to be smoothly and continuously varied through the axial or the thickness direction according the nonlinear power gradation law. A computational finite elements procedure is presented. The accuracy of the numerical procedure is verified and compared. Resonant frequencies, axial displacements as well as internal stress distributions throughout the perforated graded rotating cantilever beam are studied. Effects of material distributions, perforation patterns, as well as the rotating beam speed are investigated. Obtained results proved that the graded material distribution has remarkable effects on the dynamic performance. Additionally, circular perforation pattern produces more softening effect compared with squared perforation configuration thus larger values of axial displacements and maximum principal stresses are detected. Moreover, squared perforation provides smaller values of nondimensional frequency parameters at most of vibration modes compared with circular pattern.

Credibility Evaluation of Versatile Weight Lightening Plywood Using Piercing (천공공법을 이용한 다목적 경량 합판의 신뢰성 평가)

  • Kim, Jin-Woo;Kim, Hye-Soo;Kim, Chang-Uk;Song, Jung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.55-60
    • /
    • 2013
  • In this study, mechanical properties of versatile light weight plywood(manufacturing using piercing) are studied. A credibility evaluation was carried out for different perforation patterns including octagonal shape, rectangular shape and circular shape. A static structural analysis is conducted to find the stresses produced. Circular perforations are found to have better strength to weight ratio. Results of each type of perforation are discusses and compared.

Seismic behavior of thin cold-formed steel plate shear walls with different perforation patterns

  • Monsef Ahmadi, H.;Sheidaii, M.R.;Tariverdilo, S.;Formisano, A.;De Matteis, G.
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.377-388
    • /
    • 2021
  • Thin perforated Steel Plate Shear Walls (SPSWs) are among the most common types of seismic energy dissipation systems to protect the main boundary components of SPSWs from fatal fractures in the high-risk zones. In this paper, the cyclic behavior of the different circular hole patterns under cyclic loading is reported. Based on the experimental results, it can be concluded that a change in the perforation pattern of the circular holes leads to a change in the locations of the fracture tendency over the web plate, especially at the plate-frame interactions. Accordingly, the cyclic responses of the tested specimens were simulated by finite element method using the ABAQUS package. Likewise, perforated shear panels with a new perforation pattern obtained by implementing Topology Optimization (TO) were proposed. It was found that the ultimate shear strength of the specimen with the proposed TO perforation pattern was higher than that of the other specimens. In addition, theoretical equations using the Plate-Frame Interaction (PFI) method were used to predict the shear strength and initial stiffness of the considered specimens. The theoretical results showed that the proposed reduced coefficients relationships cannot accurately predict the shear strength and initial stiffness of the considered perforated shear panels. Therefore, the reduced coefficients should be adopted in the theoretical equations based on the obtained experimental and numerical results. Finally, with the results of this study, the shear strength and initial stiffness of these types of perforated shear panels can be predicted by PFI method.

Effect of the perforation shape on the absorption coefficient of multi-layer absorbing system (타공형태에 따른 다중 다공판 시스템의 흡음률 변화)

  • Kang, Jun-Goo;Kang, Hyun-Ju;Kim, Sang-Ryul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1202-1204
    • /
    • 2006
  • Various types of perforated sheets have been applied on the surface of porous absorptive materials in order to protect dust and to enhance interior design. This study examines experimentally influences on absorptive characteristics according to the shape of perforation which includes rectangular and resonator type as well as circular holes. The measured results shows that the resonance frequency can be changed by the shape of perforation as well as the eccentricity of holes.

  • PDF

A Study on Reinforced Concrete Beams with Perforation (철근콘크리트 유공보에 관한 연구)

  • Park, Kyong-Ho
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.7-14
    • /
    • 2001
  • In building structure, the story height can be minimized by providing openings in beams which serves for the utility equipments passing through. The dead space in false ceiling thus put to economical use in the form of a substantial reduction in materials and construction cost. In the case of steel structure, there is no critical risk in the structural strength because of reinforcing methods of stiffness and steel plate but in the case of reinforced concrete structure, proper provision should be made in designing these openings, otherwise there is a risk that these opening will possibly weaken the structural strength of the building frame to a critical degree. In this paper, for the numerical analysis of the reinforced concrete beams with circular opening in the web, expecting stress concentration of the circular opening, reinforcing methods were studied. Twenty test pieces with each different reinforcing methods were tested and their resisting forces were defined. From the numerical analysis and test results, the followings were founded;(1)high shear stress distributed around the openings reduce the shearing strength, (2)from the numerical analysis, the maximum tensile stress occurred at opening nodes 1,7, these phenomena were agreed with the test results, (3)reinforcing method around openings have to carried out for stopping diagonal cracks, and (4)both, by steel plate, and wire mesh, are effective reinforcing methods.

  • PDF

Numerical analysis of heat transfer and friction factors in a duct having circular perforated baffles (원형 다공배플이 있는 덕트에서의 열전달과 마찰계수에 관한 수치해석)

  • Oh, S.K.;Ahn, S.W.;Ary, Bachtiar Krishna Putra;Bae, S.T.
    • Journal of Power System Engineering
    • /
    • v.16 no.4
    • /
    • pp.44-50
    • /
    • 2012
  • The present numerical study was performed to determine how the two perforated baffles( Inclined angle=$5^{\circ}$; perforation diameter=2cm) placed at a rectangular duct affect heat transfer and associated friction factors. The parametric effects of perforated baffles(3, 6 and 12 holes) and flow Reynolds number ranging from 28,900 to 61,000 on the heated target surface are explored. As for the investigation of heat transfer behaviours on the local Nusselt number with two baffles placed at $x/D_h=0.8$ and $x/D_h=0.8$ of the edge baffles, it is evident that the average Nusselt number increases with increasing number of holes, but the friction factor decreases with an increase in the hole number placed at baffles. The numerical results by commercial code CFX 10.0 are confirmed with the experimental data.

Comparative Anatomy of the Secondary Xylem in the stem of Araliaceous Plants in Korea (한국산 두릅나무과 식물 줄기에서 2기목부의 비교 해부)

  • 박동옥
    • Journal of Plant Biology
    • /
    • v.36 no.4
    • /
    • pp.345-355
    • /
    • 1993
  • Anatomical study of the secondary xylem in Araliaceous plants, induding 7 genera and 11 species grown in Korea, was carried out to elucidate the relationship among genera in the family. Wood of Hedera has difbse porous and shows ulmiform pattern of angular vessels, simple perforation plate, and alternate pitting. In addition, its ray is homogeneous type II with only procumbent ray cell. Ring porous wood of Dendropanax shows ulmiform of angular vessels, simple perforation plate, alternate pitting, and heterogeneous type II ray, which has sometimes horizontal secretory cavity. Fatsia has diffuse porous wood, which shows ulmiform of angular vessels, scalariform perforation plate (3-9 bars), scalariform pitting, spiral thickening in the lateral wall of vessel, and heterogeneous type II ray with sheath cells. Kalopanax has ring porous wood, which shows ulmiform of circular vessels, simple perforation plate and alternate pitting, and heterogeneous type II ray. While K pictum appears tylose with septum, K pictum var. maximowczii appears tylose without septum. Echinopanax shows ring porous wood, ulmiform of angular vessels, simple perforation plate, scalariform pitting, and tylose with septum. And the ray of Echinopanax is paedomorphic type I composed of only upright cells. Acanthopanax genus is composed of diffuse porous wood, ulmiform of angular vessels, simple perforation plate and alternate pitting. In this genus, A. sessiliflorus has heterogeneous type II ray, apotracheal axial parenchyma and tylose with septum. A. senticosus appears paedomorphic type I with only upright cells, and tylose with septum. A. koreanum and A. sieboldianum have heterogeneous type II ray but have not tylose. Aralia is composed of ring porous wood, ulmiform of circular vessels, simple perforation plate, alternate pitting, heterogeneous type II ray, and tylose contained both septum and reticulate. On the basis of arrangement, shape, length and diameter of vessel element, the angle of end wall to vessel axis, and ray type, the line of specialization in these genera is as follow: from Fatsia, the most primitive, to the most highly specialized Aralia, throughout Hedera, Acanthopanax, Echinopanax, Dendropanax, and Kalopanax by turns. turns.

  • PDF

Evaluation of cyclic fracture in perforated beams using micromechanical fatigue model

  • Erfani, Saeed;Akrami, Vahid
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.913-930
    • /
    • 2016
  • It is common practice to use Reduced Web Beam Sections (RWBS) in steel moment resisting frames. Perforation of beam web in these members may cause stress and strain concentration around the opening area and facilitate ductile fracture under cyclic loading. This paper presents a numerical study on the cyclic fracture of these structural components. The considered connections are configured as T-shaped assemblies with beams of elongated circular perforations. The failure of specimens under Ultra Low Cycle Fatigue (ULCF) condition is simulated using Cyclic Void Growth Model (CVGM) which is a micromechanics based fracture model. In each model, CVGM fracture index is calculated based on the stress and strain time histories and then models with different opening configurations are compared based on the calculated fracture index. In addition to the global models, sub-models with refined mesh are used to evaluate fracture index around the beam to column weldment. Modeling techniques are validated using data from previous experiments. Results show that as the perforation size increases, opening corners experience greater fracture index. This is while as the opening size increases the maximum observed fracture index at the connection welds decreases. However, the initiation of fracture at connection welds occurs at lower drift angles compared to opening corners. Finally, a probabilistic framework is applied to CVGM in order to account for the uncertainties existing in the prediction of ductile fracture and results are discussed.

A finite element-experimental study of the impact of spheres on aluminium thin plates

  • Micheli, Giancarlo B.;Driemeier, Larissa;Alves, Marcilio
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.263-280
    • /
    • 2015
  • This paper describes a study of the collision of hard steel spheres against aluminium thin circular plates at speeds up to 140 m/s. The tests were monitored by a high speed camera and a chronoscope, which allowed the determination of the ballistic limit and the plate deformation pattern. Quasi-static material parameters were obtained from tests on a universal testing machine and dynamic mechanical characterization of two aluminium alloys were conducted in a split Hopkinson pressure bar. Using a damage model, the perforation of the plates was simulated by finite element analysis. Axisymmetric, shell and solid elements were employed with various parameters of the numerical analysis being thoroughly discussed, in special, the dynamic model parameters. A good agreement between experiments and the numerical analysis was obtained.

Sound absorption of micro-perforated elastic plates in a cylindrical impedance tube (원통형 임피던스 튜브 내 미세천공 탄성 판의 흡음)

  • Kim, Hyun-Sil;Kim, Bong-Ki;Kim, Sang-Ryul;Lee, Seong-Hyun;Ma, Pyung-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.181-187
    • /
    • 2018
  • In this paper, sound absorption of micro-perforated elastic plates installed in an impedance tube of a circular cross-section is discussed using an analytic method. Vibration of the plates and sound pressure fields inside the duct are expressed in terms of an infinite series of modal functions, where modal functions in the radial direction is given in terms of the Bessel functions. Under the plane wave assumption, a low frequency approximation is derived by including the first few plate modes, and the sound absorption coefficient is given in terms of an equivalent impedance of a single surface. The sound absorption coefficient using the proposed formula is in excellent agreement with the result by the FEM (Finite Element Method), and shows dips and peaks at the natural frequencies of the plate. When the perforation ratio is very small, the sound absorption coefficient is dominated by the vibration effect. However, when the perforation ratio reaches a certain value, the sound absorption is mainly governed by the rigid MPP (Micro-Perforated Plate), while the vibration effect becomes very small.