• 제목/요약/키워드: Circular Nozzle

검색결과 138건 처리시간 0.032초

초음속 페탈 이젝터 시스템에 관한 실험적 연구 (An Experimental Study on the Supersonic Petal Ejector System)

  • 이준희;김중배;최보규;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2145-2150
    • /
    • 2003
  • Ejector system is one of fluid machinery which can entrain the fluid in low pressure part and transport it to the higher pressure part. The ejector system has been widely used for the purpose of obtaining high-vacuum state, fluid transport, thrust augmentation, etc. It can transport a large capacity of fluid with relatively small device of no any moving parts, and thus seldom causes mechanical troubles. However, the conventional ejector system has been pointed out that its overall efficiency is quite low compared with other fluid machinery since it is derived by only the pure shear stresses. In the present study, 4, 6, and 8 lobed petal nozzles with a design Mach number of 1.7 are adopted as a primary nozzle to improve the ejector performance, and are compared with a conventional circular nozzle. The static pressures along the diffuser wall are measured to qualify the flow field inside the supersonic petal ejector system.

  • PDF

원형제트출구 전단류 조절에 따른 제트충돌면에서의 열전달 특성 (Heat Transfer Characteristics on Impingement Surface with Control of Axisymmetric Jet(I))

  • 이창호;김영석;조형희
    • 대한기계학회논문집B
    • /
    • 제22권3호
    • /
    • pp.386-398
    • /
    • 1998
  • The present experiment is conducted to investigate heat transfer characteristics on the impinging surface with secondary flows around circular nozzle jets. The changed vortex pattern around jet affects significantly the flow characteristics and heat transfer coefficients on the impinging surface. The effects of the jet vortex control are also considered with jet nozzle-to-plate distances and main jet velocities. The vortex pattern around a jet is changed from a convective instability to an absolute instability with a velocity suction ratio of the main jet and the secondary counterflow. With the absolute instability condition, the jet potential core length increases and the heat transfer on the impinging surface is increased by small scale eddies. The region of high heat transfer coefficients is enlarged with the high Reynolds number due to increasing secondary peak values. The effect of suction flows is influenced largely with collars attached the exit of the jet nozzle because the attached collar guides well the counterflow around the main jet.

衝突水噴流에 의한 高溫面의 沸騰熱流束에 관한 硏究 (A study on the boiling heat flux on high temperature surface by impinging water jet)

  • 이기우;김유
    • 대한기계학회논문집
    • /
    • 제12권1호
    • /
    • pp.81-94
    • /
    • 1988
  • 본 연구에서는 표면상태가 다양한 고온면을 충돌온류에 의하여 냉각하는 방식이 광범위하게 응용되고 있는 점에 유의하여 표면조도, 노즐직경 및 분류속도를 변화시키고 노즐끝에 전열면의 직경과 동일한 원형판을 부착하여 비철액체를 막고 문극내에 온류액체를 강제유동시킴으로써 열전달에 미치는 모든 영향을 실험에 의해 고찰하고 고찰하고 포화수온류에 의한 열류속의 무차원관계식을 도출하는 것을 본 연구의 목적으로 하였다.

전열제어를 위한 충돌제트의 유동특성에 관한 연구(I) (A Study about Flow Characteristics of Impinging Jet for Thermal Control (I))

  • 김동균;김정환;배석태;김시범;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권6호
    • /
    • pp.1330-1335
    • /
    • 2001
  • A present study is the flow characteristics of impinging jet by PIV measurement and numerical analysis. The flow characteristics of impinging jet flow are affected greatly by nozz1e inlet velocity An circular sharp edged nozzle type($45^{\circ}$ ) was used to achieve uniform mean velocity at the nozz1e inlet, and its diameter is 10 mm(d). Therefore, the flow characteristics on the impinging jet can be changed largely by the control of main flow In this parent study, we investigate the effects of inlet velocity, its variable is nozzle inlet Reynolds numbers (Re=1500, 3000, 4500, 6000 and 7500)

  • PDF

선대칭 형태에 있어서의 베이스 압력의 예측 (Prediction on The Base Pressure for An Axisymmetric Body)

  • 백두성;한영출
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.491-496
    • /
    • 2000
  • The physics of the flow field surrounding an engine nacelle afterbody is very complex. A high pressure jet from the nozzle interacts with the external flow and causes upstream influence on the afterbody surface field. At certain conditions, the nozzle boundary layer can separate, either by shock wave interaction or by adverse pressure gradient effect, resulting in a severe drag penalty. Furthermore, a finite afterbody base implies a recirculating flow region. A flow modeling method has been developed to analyze the flow in the annular base(rear-facing surface) of a circular engine nacelle flying at subsonic speed but with a supersonic exhause jet. Real values of exhaust gas properties and temperature are included.

  • PDF

초음속 페탈이젝터-디퓨저 시스템에 관한 실험적 연구 (An Experimental Study on the Supersonic Petal Ejector-Diffuser System)

  • 이준희;김중배;최보규;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제20회 춘계학술대회 논문집
    • /
    • pp.19-22
    • /
    • 2003
  • 이젝터-디퓨저 시스템은 일종의 유체기계로서, 저압부의 유체를 혼입하여 고압부로 이송한다. 기존의 이젝터-디퓨저 시스템은 유체의 순수한 전단력만을 이용하므로 다른 유체기계에 비하여 효율이 낮은 단점이 있다. 본 연구에서는 이젝터-디퓨저 시스템의 효율을 높이기 위하여, 설계마하수가 M$_{d}$=1.7이고 로브의 개수가 각각 4, 6, 8개인 페탈노즐을 구동노즐로 사용하였고, 원형구동노즐을 사용한 이젝터-디퓨저 시스템의 결과와 비교하였다.

  • PDF

소형터보압축기 회전차와 볼류트의 상호작용 (Interaction of Impeller and Volute in a Small-size Turbo-Compressor)

  • 김동원;안병재;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.807-812
    • /
    • 2001
  • The effects of casing shapes on the interaction of the impeller and volute in a small-size turbo-compressor are investigated. Numerical analysis is conducted for the compressor with circular and single volute casings from inlet to discharge nozzle. In order to predict the flow pattern inside the entire impeller, vaneless diffuser, and casing, calculations with a multiple frame of reference method between the rotating and stationery parts of the domain are carried out. For incompressible turbulent flow fields, the continuity and three-dimensional time-averaged Navier-Stokes equations are employed. To predict the performance of two types of casings, the static pressure and loss coefficients are obtained with various flow rates. Also, static pressure distributions around casings are studied for different casing shapes, which are very important to predict the distribution of radial load.

  • PDF

이중원관 구속제트의 유동특성에 관한 연구 (A Study on Flow Characteristics of Confined Circular Jet within Pipe)

  • 서민식;최장운;이영호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1997년도 추계 학술대회논문집
    • /
    • pp.136-142
    • /
    • 1997
  • The present study is aimed to investigate flow characteristics of confined jet flow within circular pipe. Numerical method based upon revised SOLA scheme which secures conservation form of convective terms on irregular grids by interpolating the variables appearing in staggered meshes is adopted on cylindrical coordinate formation. Computation was carried out for two kinds of Reynolds number, $10^5\;and\;1.5{\times}10^5$ defined by diameter of outer pipe and time-mean driving jet velocity. Results show that periodic vortex shedding from the jet mixing layer is profound and related unsteady flow characteristics prevail over the entire region. Spatial distribution of pressure and kinetic energy, fluctuation of static wall pressure, together with radial velocity components are examined in terms of instantaneous and time-mean point of views.

  • PDF

비압축성 Navier-Stokes 방정식을 이용한 추력 편향 노즐 해석(원통에서 사각형으로 변환하는 내부 흐름을 중심으로) (A Flow Analysis of Vectored Thrust Nozzle Using Incompressible Navier-Stokes Solver)

  • 신대용;윤용현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1997년도 추계 학술대회논문집
    • /
    • pp.66-72
    • /
    • 1997
  • Circular-to-rectangular transition ducts are used as exhaust components of high performance fighter aircraft with vectored thrust nozzles. Three-dimensional incompressible Navier-Stokes solver is used to analyze the transition duct. Cross sections of transition duct are defined by superelliptic equation. The grid system is generated by Non-Uniform Rational B-Spline, after generating surface grid by blending the cross sections. Good agreement between the results of the computational simulation and the experimental data is observed.

  • PDF

케이싱 형상 변화가 소형 터보압축기 성능에 미치는 영향 (Effects of Casing Shape on the Performance of a Small-Size Turbo-Compressor)

  • 김동원;김윤제
    • 설비공학논문집
    • /
    • 제14권12호
    • /
    • pp.1031-1038
    • /
    • 2002
  • The effects of casing shape on the performance and interaction between the impeller and casing in a small-size turbo-compressor are investigated. Numerical analysis is conducted for the compressor with circular and single volute casings from inlet to discharge nozzle. In order to predict the flow pattern inside the entire impeller, vaneless diffuer and casing, calculations with multiple frames of reference method between the rotating and stationery parts of the domain are carried out. For compressible turbulent flow fields, the continuity and three-dimensional time-averaged Wavier-Stokes equations are employed. To evaluate the performance of two types of casings, the static pressure and loss coefficients are obtained with various flow rates. Also, static pressure distributions around casings are studied for different casing shapes, which are very important to predict the distribution of radial load. To prove the accuracy of numerical results, measurements of static pressure around casing and pressure difference between the inlet and outlet of the compressor are peformed for the circular casing. Comparisons of these results between the experimental and numerical analyses are conducted, and reasonable agreement is obtained.