• Title/Summary/Keyword: Circular Hollow Section (CHS)

Search Result 23, Processing Time 0.019 seconds

Fatigue Strength and Fracture Behaviour of CHS-to-RHS T-Joints Subjected to Out-of-Plane Bending

  • Bian, Li-Chun;Lim, Jae-Kyoo;Kim, Yon-Jig
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.207-214
    • /
    • 2003
  • The fatigue behaviour of six different hollow section T-joints subjected to out-of-plane bending moment was investigated experimentally using scaled steel models. The joints had circular brace members and rectangular chord members. Hot spot stresses and the stress concentration factors. (SCFs) were determined experimentally. Fatigue testing was carried out under constant amplitude loading in air. The test results have been statistically evaluated, and show that the experimental SCF values for circular-to-rectangular (CHS-to-RHS) hollow section joints were found to be below those of circular-to-circular (CHS-to-CHS) hollow section joints. The fatigue strength, referred to experimental hot spot stress, was in reasonably good agreement with referred fatigue design codes for tubular joints.

Buckling analysis of thin-walled circular hollow section members with and without longitudinal stiffeners

  • Cuong, Bui H.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.231-242
    • /
    • 2022
  • Numerical solutions for the linear buckling behavior of thin-walled circular hollow section members (CHS) with and without longitudinal stiffeners are presented using the semi-analytical finite strip method (SAFSM) which is developed based on Marguerre's shallow shell theory and Kirchhoff's assumption. The formulation of 3-nodal line finite strip is presented. The CHS members subjected to uniform axial compression, uniform bending, and combination of compression and bending. The buckling behavior of CHS is investigated through buckling curves which relate buckling stresses to lengths of the member. Effects of longitudinal stiffeners are studied with the change of its dimensions, position, and number.

Behavior and calculation on concrete-filled steel CHS (Circular Hollow Section) beam-columns

  • Han, Lin-Hai;Yao, Guo-Huang;Zhao, Xiao-Ling
    • Steel and Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.169-188
    • /
    • 2004
  • A mechanics model is developed in this paper for concrete-filled steel CHS (circular hollow section) beam-columns. A unified theory is described where a confinement factor (${\xi}$) is introduced to describe the composite action between the steel tube and the filled concrete. The predicted load versus deformation relationship is in good agreement with test results. The theoretical model was used to investigate the influence of important parameters that determine the ultimate strength of concrete-filled steel CHS beam-columns. The parametric and experimental studies provide information for the development of formulas for the calculation of the ultimate strength of the composite beam-columns. Comparisons are made with predicted beam-columns strengths using the existing codes, such as LRFD-AISC-1999, AIJ-1997, BS5400-1979 and EC4-1994.

Experimental and numerical study of one-sided branch plate-to-circular hollow section connections

  • Hassan, M.M.;Ramadan, H.;Abdel-Mooty, M.;Mourad, S.A.
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.877-895
    • /
    • 2015
  • Connections to circular hollow steel sections (CHS) are considered one of the most complex and time consuming connections in steel construction. Such connections are usually composed of gusset plates welded to the outside of the steel tube or penetrating the steel tube. Design guides, accounting for the effect of connection configuration on the strength of the connection, are not present. This study aims to investigate, through experimental testing and a parametric study, the influence of connection configuration on the strength of one sided branch plate-to-CHS members. A notable effect was observed on the behavior of the connections due to its detailing changes with respect to capacity, failure mode, ductility, and stress distribution. A parametric study is performed using the calibrated analytical model to include a wider range of parameters. The study involves 26 numerical analyses of finite element models including parameters of the diameter-to-thickness (D/t) ratio, length of gusset plate, and connection configuration. Accordingly, a modification to the formulas provided by the current design recommendations was suggested to include connection configuration effects for the one sided branch plate-to-CHS members.

Study on the Ultimate Strength of Gusset Plate-Circular Hollow Section(CHS) Joint (거셋플레이트-원형강관 접합부의 극한내력 도출에 관한 연구)

  • Kim, Woo-Bum;Shin, Kyung-Jae;Choi, Hyung-Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.523-533
    • /
    • 2011
  • The demand for the circular hollow section (CHS) has been increasing due to its structural advantage in long-span structures and high-rise buildings. There are not enough researches on the CHS structure, though. The behavior of the gusset plate CHS joint, to predict the ultimate strength, is not easy to predict because the load deflection curve does not show consistency. Therefore, in this study, experiments and finite element analysis (FEA) were carried out to determine the ultimate strength according to the proposed ultimate deformation limit. Finally, a reasonable ultimate strength formula was proposed through comparisons with other design guides.

Static strengths of preloaded circular hollow section stub columns strengthened with carbon fiber reinforced polymer

  • Chen Wei;Yongbo Shao;Mostafa Fahmi Hassanein;Chuannan Xiong;Hongmei Zhu
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.455-466
    • /
    • 2023
  • To investigate the load bearing capacity of axially preloaded circular hollow section (CHS) stub columns strengthened by carbon fiber reinforced polymer (CFRP), theoretical analysis is carried out. The yield strength and the ultimate strength of a CFRP strengthened preloaded CHS stub column are determined at the yielding of the CHS tube and at the CFRP fracture, respectively. Theoretical models are proposed and corresponding equations for calculating the static strengths, including the yield strength and the ultimate strength, are presented. Through comparison with reported experimental results, the theoretical predictions on the static strengths are proved to be accurate. Through finite element (FE) analyses, parametric studies for 258 models of CFRP strengthened preloaded CHS stub columns are conducted by considering different values of tube diameter, tube thickness, CFRP layer and preloading level. The static strengths of the 258 models predicted from presented equations are proved to be in good agreement with FE simulations when the diameter-to-thickness ratio is less than 90ε2. The parametric study indicates that the diameter and the thickness of the steel tube have great effects on CFRP strengthening efficiency, and the recommended ranges of the diameter and the thickness are proposed.

Tests of concrete-filled double skin CHS composite stub columns

  • Zhao, Xiao-Ling;Grzebieta, Raphael;Elchalakani, Mohamed
    • Steel and Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.129-146
    • /
    • 2002
  • This paper describes a series of compression tests carried out on concrete filled double skin tubes (CFDST). Both outer and inner tubes are cold-formed circular hollow sections (CHS). Six section sizes were chosen for the outer tubes with diameter-to-thickness ratio ranging from 19 to 57. Two section sizes are chosen for the inner tubes with diameter-to-thickness ratio of 17 and 33. The failure modes, strength, ductility and energy absorption of CFDST are compared with those of empty single skin tubes. Increased ductility and energy absorption have been observed for CFDST especially for those having slender outer tubes with larger diameter-to-thickness ratio. Predictions from several theoretical models are compared with the ultimate strength of CFDST stub columns obtained in the tests. The proposed formula was found to be in good agreement with the experimental data.

Study on the Ultimate Strength of Gusset Plate-Circular Hollow Section(CHS) Joint Stiffened with Rib-plate by End Restraint (단부 구속을 받는 리브 보강 플레이트 원형강관 X형 접합부의 극한내력 도출에 관한 연구)

  • Kim, Woo-Bum;Park, Hyun-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.383-398
    • /
    • 2012
  • A finite element analysis study was performed to investigate the behavior and strength of a Plate-Circular Hollow Section joint stiffened with Rib-plate, Since The strength of plate-Circular Section joint is reduced by joint of stress and local plastic deformation which is caused by wall moment, rib plates are attached to the upper and lower Plate-Circular Hollow Section joint for redistribution of stress. The behaviors of joints stiffened with Rib-plate according to shape of rib and reinforcing method, etc are different from those of joints which is not stiffened. However, the criterion of hollow structural section was limited on some parts. Therefore, this study intends to investigate the behavior and structural capacity of Plate-Circular Hollow Section joints stiffened with Rib-plate and compare the Finite element analysis with the Design Equation. Finally, this study proposes the reasonable ultimate strength formula through the comparisons with other design guide.

Evaluation of Compressive Chord Plastification of Circular Hollow Section X-joint Truss Connection (원형강관 X-이음 트러스접합부의 압축 주강관소성화 평가)

  • Lee, Kyungkoo;Sin, Yong Sup;Son, Eun Ji
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.5
    • /
    • pp.447-454
    • /
    • 2015
  • The researches on circular hollow section(CHS) connections have been conducted continuously because of development of material properties and complex local behavior of the connections. The purpose of this study is that the effects of material strength and chord wall slenderness on chord plastification and strength of CHS X-joint truss connection under compression on branch member were evaluated. To this end, finite element analyses were performed for various connections, using ANSYS Mechanical APDL program. Based on the analysis results, the design strength of the connections according to chord plastification limit state in KBC were examined. Finally, special considerations for CHS X-joint connection design were suggested.

A Study on the Structural Behavior and the Strength of Circular Hollow Steel(CHS) Section Columns (원형강관 기둥의 구조적인 거동 및 강도에 관한 연구)

  • Kang, Doo Won;Kwon, Young Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.505-514
    • /
    • 2009
  • This paper describes the structural behavior and the ultimate strengths of circular hollow steel (CHS) sections based on a series of compression tests. The ultimate strengths of CHS section columns are mainly dependent on both diameter-thickness ratio and column slenderness ratio. For the CHS sections with a high diameter-thickness ratio, an elastic or an inelastic local buckling may occur prior to the overall buckling, and it may decrease the column strength. Test sections were fabricated from SM400 steel plate of 2.8 mm and 3.2 mm in thickness and were tested to failure. The diameter-thickness ratios of the test sections ranged from 45 to 170 to investigate the effect of local buckling on the column strength. The compression tests indicated that the CHS sections of lower diameter-thickness ratio than the yield limit in the current design specifications showed an inelastic local buckling and a significant post-buckling strength in the local mode. Their ultimate stresses were larger than the nominal yield stress. It was known that the allowable stresses of the sections predicted by the Korean Highway Bridge Design Specifications (2005) were too conservative in comparison with test results. The Direct Strength Method which was newly developed was calibrated for application to the CHS sections by the experimental and numerical results. The Direct Strength Method proposed can predict properly the ultimate strength of CHS section columns whether a local buckling and an overall buckling occur nearly simultaneously or not.