• Title/Summary/Keyword: Circular Flow Tube

Search Result 209, Processing Time 0.025 seconds

AXISYMMETRIC STOKES FLOW PAST A DISK IN A CIRCULAR TUBE (원관 내의 디스크를 지나는 축대칭 스톡스 유동)

  • Jeong, Jae-Tack
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.96-101
    • /
    • 2016
  • A two-dimensional Stokes flow past a circular disk in a circular tube is analyzed. The circular disk is located coaxially with the circular tube and the Hagen-Poiseuille flow exists at upstream and downstream far from the circular disk. The Stokes approximation is used and the flow is investigated analytically by using the method of eigenfunction expansion and the method of least square. From the analysis, the stream function and the pressure of the flow field are obtained, and the streamlines and pressure distribution are shown. Also, the pressure and shear stress distributions on the circular disk and circular tube wall are calculated, and shown for some typical radii of the circular disk. The additional pressure drop induced by the disk and the drag force exerted on the disk are compared as functions of the radius of the circular disk, and it is shown that the shear force on the wall of the tube increases due to the disk.

An Experimental Study on Flow Angle with Swirl in a Horizontal Circular Tube (수평 원통 관에서 선회를 동반한 유동각에 대한 실험적 연구)

  • Chang, Tae-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.82-87
    • /
    • 2003
  • Flow angle with Swirl in a horizontal circular tube and a cylindrical annuli were experimentally studied for its visualization. This present investigation deals with flow angle, flow visualization studies and vortex core by using oil smoke and a hot wire anemometer for Re = 40,000 and 50000 at X/D = 41, 59 and 71 in a horizontal circular tube. In the swirl air flow, a vortex core was formed at high swirl intensity along the test tube. The flow angle and the vortex core depended on the swirl intensity along the test tube. The results of flow angles with swirl measured by flow visualization and hot wire reasonably agree with those of Sparrow One of the primary objectives of this research was to measure the flow angle with swirl in a cylindrical annuli along the test tube for different Reynolds numbers. The Reynolds number for these measurements ranged from 60,000 to 100,000 with L/D = a to 4.

  • PDF

The Analytic Analysis of Suppressing Jet Flow at Guide Tube of Circular Irradiation Hole in HANARO (하나로 원형 조사공의 안내관 제트유동 억제에 대한 해석)

  • Park Y. C.;Wu S. I.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.214-219
    • /
    • 2004
  • The HANARO, a multi-purpose research reactor of 30 MWth, open-tank-in-pool type, has been under normal operation since its initial criticality in February, 1995. The HANARO is composed of inlet plenum, grid plate, core channel with flow tubes and chimney. The reactor core channel is located at about twelve m (12 m) depth of the reactor pool and cold by the upward flow that the coolant enters the lower inlet of the plenum, rises up through the grid plate and the core channel and exit through the outlet of chimney. A guide tube is extended from the reactor core to the top of the reactor chimney for easily un/loading a target under the reactor normal operation. But active coolant through the core can be Quickly raised up to the top of the chimney through the guide tube by jet flow. This paper is described an analytical analysis to study the flow behavior through the guide tube under reactor normal operation and unloading the target. As results, it was conformed through the analysis results that the flow rate, about fourteen kilogram per second (14 kg/s) suppressed the guide tube jet and met the design cooling flow rate in a circular flow tube, and that the fission moly target cooling flow rate met the minimum flow rate to cool the target.

  • PDF

Pulsatile Flow Analyses of Newtonian Fluid and Non-Newtonian Pluid in Circular Tube (원관내 뉴턴유체와 비뉴턴유체의 맥동유동특성)

  • Cho, Min-Tae;Roh, Hyung-Woon;Suh, Sang-Ho;Kim, Jae-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1585-1596
    • /
    • 2002
  • The objectives of the present study are to numerically and experimentally investigate the steady and pulsatile flow phenomena in the circular tubes, to quantitatively compare the flow characteristics of Newtonian and non-Newtonian fluids, and to find meaningful hemodynamic information through the flow analysis in the human blood vessels. The particle image velocimetry is adopted to visualize the flow fields in the circular tube. and the results from the particle image velocimetry are used to validate the results of the numerical analysis. In order to investigate the blood flow phenomena in the circular tube. constitutive equations, which are suitable to describe the rheological properties of the non-Newtonian fluids. are determined, and the steady and pulsatile momentum equations are solved by the finite volume prediction. The velocity vectors of the steady and pulsatile flow in the circular tube obtained by the particle image velocimetry arc in good agreement with those by the numerical analysis. For the given mass flow rate. the axial velocity profiles of the Newtonian and the non-Newtonian fluids appear differently. The pulsatile flow phenomena of the Newtonian and the non-Newtonian fluids are quite different from those of the steady flow.

Study on the Characteristics of Impulse Wave Discharged from the Tube Exit with Non-Circular Cross-Section (비원형 관출구로부터 방출되는 펄스파의 특성에 관한 연구)

  • Shin, Hyun-Dong;Kweon, Yong-Hun;Lee, Young-Ki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.550-555
    • /
    • 2003
  • When a shock wave arrives at an open end of tube, an impulse wave is discharged from the tube exit and complicated flow is formed near tube exit. The flow field is influenced by the cross-sectional geometry of tube exit, such as circular, square, rectangular, trapezoid and etc. In the current study, three-dimensional propagation characteristics of impulse wave discharged from the tube exit with non-circular cross section are numerically investigated using a CFD method. Total variation diminishing (TVD) scheme is used to solve the three-dimensional, unsteady, compressible Euler equations. Computations are performed for the Mach numbers of the incident shock wave $M_{s}$ below 1.5. The results obtained show that the peak pressure of the impulse wave and propagation directivity depends on the cross-sectional geometry of tube exit and the Mach number of incident shock wave.

  • PDF

Two-dimensional Heat Conduction and Convective Heat Transfer a Circular Tube in Cross Flow (원관 주위의 2차원 전도열전달과 국소 대류열전달)

  • Lee Euk-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.25-33
    • /
    • 2005
  • When a circular tube with uniform heat generation within the wall was placed in a cross flow, heat flows by conduction in the circumferential direction due to the asymmetric nature of the fluid flow around the perimeter of the circular tube The circumferential heat flow affects the wall temperature distribution to such an extent that. in some cases, significantly different results may be obtained for geometrically similar surfaces. In the present investigation, the effect of circumferential wall heat conduction is investigated for forced convection around circular tube in cross flow of air and water Two-dimensional temperature distribution $T_w(r,{\theta})$ is calculated through the numerical analysis. The difference between one-dimensional and two-dimensional solutions is demonstrated on the graph of local heat transfer coefficients. It is observed that the effect of working fluid is very remarkable.

Analysis of flow and heat transfer in internally finned tube (내부 핀이 부착된 열교환기의 유동장해석)

  • Jeong Ho-Eyoul;Jeong Jae-Tack;Ko Hyung-Jong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.139-144
    • /
    • 1999
  • There have been many studies for heat transfer enhancement. Particularly, the study of flow in heat exchangers which have fin device has been main theme in heat transfer area. Practically, the circular tube which has internal fins is widely used for developing heat transfer rate. In this study, flow and heat transfer analysis of the circular tube with fins are investigated. The height and the number of fins are arbitrary. The flow field is assumed to be laminar. The conformal mapping is used for analytic solution of the laminar flow field. Discretization of governing equation, namely, FDM was used for numerical analysis. The velocity field, flow rate and shear stress are calculated for some numbers of fins in circular tube and for some heights of fin. Temperature fields are plotted along the tube length. It can be shown that the numerical solution agrees with the analytical solution.

  • PDF

The Cooling Characteristics for Circular Irradiation Hole under Suppressing Jet Flow at Guide Tube in HANARO (안내관 제트유동 억제시의 하나로 원형 조사공의 냉각특성)

  • Wu S. I.;Park P. C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.208-213
    • /
    • 2004
  • The HANARO, multi-purpose research reactor, 30 MWth open-tank-in- pool type, is under normal operation since it reached the initial critical in February 1995. The HANARO is planning to produce a fission moly-99 of radio isotopes, a mother nuclide of Tc-99m, a medical isotope and is under developing a target handling tool for loading and unloading it in a circular flow tube (OR-5). A guide tube is extended from the reactor core to the top of the reactor chimney for easily un/loading a target under the reactor normal operation. But active coolant through the core can be quickly raised up to the top of the chimney through the guide tube by jet flow. This paper is described an analytical analysis to calculate the hole size of a orifice inserted in the circular irradiation hole and to study the flow characteristics through the guide tube under reactor normal operation and loading the target. As results, the results show that the hole size of orifice was 31 mm of the inner diameter to suppress the guide tube jet flow and the coolant safely cooled the target of fission moly after inserting the orifice to the flow tube.

  • PDF

An Experimental Investigation of Jet Impingement Cooling Using the Vortex Tube (보텍스튜브를 이용한 충돌냉각의 실험적 연구)

  • Shin, Woon-Chul;Kim, Chang-Soo;Bae, Shin-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.8-15
    • /
    • 2007
  • The jet impingement cooling characteristics are investigated experimentally. The study is motivated by the potential application of local hot spot cooling by means of the vortex tube. The purposes of this research are to examine the effect of the nozzle-block spacing and flow rate. The results of jet through vortex tube is compared with ones of circular Jet. Flow visualization by the smoke-wire technique is also performed to investigate the flow structure. As the nozzle-block spacing is increased and flow rate decreased, the cooling effect of the Jet through the vortex tube decreases mere remarkably than that of the circular jet. So the cooling effect for the jet through the vortex tube is higher than that for the circular jet at $H/D{\leq}3$, $Q{\geq}10m^3/h$.

A Study on Swirling Flow in a Vertical Circular Tube (수직원통관에서 선회유동의 속도분포에 관한 연구)

  • Chang, Tae-Hyun;O, Geon-Je;Lee, Hae-Soo;Kim, Sang-Youn;Doh, Deog-Hee
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.3
    • /
    • pp.16-23
    • /
    • 2011
  • Experiment and numerical investigation are performed on swirling water flow in a vertical circular tube. This kind of flow is used in heat exchangers, combustion chambers, thermal power plants, and other mechanical equipment to move slurries or to convey materials. However, limited information on swirling flow in vertical circular tubes is available. In the current paper, the three-dimensional particle image velocimetry(PIV) technique is employed to compare the measured velocity profiles of water along the vertical circular tube with those of non-swirl flow. In addition, computational fluid dynamics(CFD) code was applied to calculation of the flow velocities with swirl.